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1 Introduction

Log-linear models are useful for determining whether dependencies exist be-
tween categorical variables; however, when there are interactions, the nature
of the association needs to be described. Unfortunately, the descriptions can
be challenging especially when the categorical variables have a large num-
ber of categories and/or the table is high-dimensional. To fully capture the
dependency structure would require computing all possible conditional odds
ratios (ORs), which in the case of large tables is often not very enlightening.
Association models (AMs) provide a solution to this problem by imposing
special structures on the interactions between categorical variables thus lead-
ing to more parsimonious models that facilitate insightful interpretation of
interactions. A central characteristic of all AMs is that interactions are rep-
resented by multiplicative terms.

Basically, AMs have a special multiplicative structure imposed on some
or all interaction terms of a standard log-linear model. The parameters of the
multiplicative terms have high interpretative value and reduce the number
of parameters needed to describe the nature and strength of interactions. In
some AMs, the model remains log-linear, while others are log-multiplicative,
i.e. non-linear in their parameters. ORs, which play a predominant role in
log-linear model (and AMs) analysis and interpretation, are functions of the
parameters introduced in an AM, and plots of these parameters give pictures
of the features and structure of the associations.

In addition to providing visual plots representing associations between
variables, the models themselves have graphical representations. The graph-

1



ics greatly aid in communication because they represent scientific content
and in some cases underlying processes. To differentiate between models
and for clarity, we advocate that models should be presented both graph-
ically and algebraically. Many of the AMs that we discuss have the same
basic graphical representation. The algebraic representations without also
using their graphical representations tend to cloud the relationships between
models, but the algebraic form provides details that may be lacking in the
graphical representation.

AMs developed for the analysis of categorical variables have been derived
from numerous frameworks. They provide useful structured representations
of interactions among variables allowing a special treatment for ordinal vari-
ables. AMs have been developed either directly for specific modeling purposes
(e.g. contingency table analysis) or have been arisen through a theorized
underlying processes (e.g. item response theory (IRT)). They have been pro-
posed over different fields and sub-fields, often independently, which has lead
to a fractured literature on the subject. It is evident that AMs offer a power-
ful and flexible platform for diverse areas of applications. The class of models
that we generically refer to as AMs consists of many models with different
names but of the same general form. These include, among others, linear
by linear models (LL), row models (R), column models (C), uniform models
(U), and M -dimensional row-column AMs (RC(M)) ([28, 30, 31]), general-
ized additive effects and multiplicative interaction model used to study plant
genetics ([21]), graphical latent variable models for categorical data ([3]), IRT
models ([4, 5, 36, 49]), Ising model ([45]), generalized Newton’s law of gravity
([17]), network psychometrics ([49]), fused graphical models ([14]), formative
response models, distance based models ([59, 19, 17, 18]), conditional multi-
nomial models ([2, 4, 35]), and discretized multivariate normal distributions
([29, 7, 58, 65, 66]). Worth mentioning are efforts to build bridges between
different fields and further explore their utility, such as connecting IRT to
log-linear models ([43, 42]), and to log-multiplicative interactions ([4, 5, 49],
and others).

AMs are closely linked to log-linear models. For this, we start in Section
2 with a brief presentation of log-linear models upon which we build the fam-
ily of AMs for two-way tables (i.e., LL, R, C, and RC(M) models). Many
of the basic features of these AMs for two-way tables carry over to models
for more variables and more complex situations. We subsequently review
statistical graphical representations of log-linear and AMs and use this as a
step toward high-dimensional generalizations of the RC(M) model. Subse-
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quently, we present high-dimensional models in detail, including estimation
and the equivalence with IRT models. Some discussion on testing and model
selection under the pseudo-likelihood framework is given. To illustrate the
use and benefits afforded by AMs, two examples are given: (i) the analysis
of a (16×6) table by models for two-way tables, and (ii) responses to 42 four
category items from three correlated scales by models for high-dimensional
tables. Lastly, we follow with a discussion that reflects on the material pre-
sented in the chapter and provides future research directions.

2 Preliminaries

Throughout this chapter, we assume that we have I items (or variables), Y =
(Y1, . . . , YI)

′, measured on n subjects. Let Y = (Y1, . . . , YI)
′ be a random

response vector where Yi ∈ Ci = {1, . . . , Ji}, and let ys = {y1s, . . . , yIs} be
observed responses for subject s ∈ {1, . . . , n}, i.e. yis = ji ∈ Ci, for i =
1, . . . , I. Furthermore, assume that there exists a set of M latent variables,
Θ = {Θ1, . . . ,ΘM} and θ = (θ1, . . . , θM)′ is a realization of them. We restrict
to models with M ≤ I while more complex models with M > I are possible.

In a contingency table representation, data form an I-dimensional table,
produced by cross-classifying the subjects’ responses on all items, having cell
entries nj1,...,jI , the frequencies of subjects with responses y = (j1, . . . , jI)

′,
where ji ∈ Ci, i = 1, . . . , I. In this set-up, the subject index s is suppressed,
but will be needed later in the chapter. Obviously,

∑
j1,...,jI

nj1,...,jI = n and
the underlying distribution, depending on the study design, can be a multino-
mial M(n,π) with probability table π = {πy} = {πj1,...,jI}, or independent
Poisson distributions P(my) in every cell, where my is the predicted or ex-
pected cell frequency. Given the sample size n, the expected cell frequencies
equal my = mj1,...,jI = nπj1,...,jI .

2.1 Hierarchical log-linear models

Contingency tables are traditionally analyzed by hierarchical log-linear mod-
els, expressed in terms of cell probabilities or expected cell frequencies1. Here

1Note that “hiearchical” refers to different models (e.g., linear regression, multi-level
models, log-linear models). In this chapter “hierarchical” refers to models where all lower
order terms that comprise an interaction are included in the model.
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we shall model the cell probabilities. In the case of many items, the corre-
sponding contingency table is high-dimensional and is often extremely sparse,
which causes inferential and estimation problems. Usually lower order inter-
actions (even only two factor interactions) are sufficient to model the response
patterns and the corresponding marginal tables are not sparse. The two-way
marginal tables are sufficient statistics for estimating two-factor interactions.
Thus, the response probabilities P (y) can be modeled, for example, by a log-
linear model with all two-factor interactions,

logP (y) = log(πy) = λ+
I∑

i=1

λ
[i]
ji

+
I∑
i,k
i<k

λ
[ik]
jijk
, ji ∈ Ci, jk ∈ Ck , (1)

where λ ensures that probabilities sum to 1, λ
[i]
ji

is the marginal (main) effect

term for the category ji of the i-th item, and λ
[ik]
jijk

is the interaction term
between the levels ji and jk of the i-th and k-th items, respectively.

Identification constraints required on parameters in (1) to obtain param-
eter estimates. Common constraints are setting the first category to zero,
i.e.,

λ
[i]
1 = λ

[ik]
11 = λ

[ik]
1jk

= λ
[ik]
ji1

= 0, for all possible values of i, k, ji, jk. (2)

Alternative constraints set last category to zero or set the sum of over cate-
gories equal to zero.

In some applications, we are only interested in the relationship between
variables; however, in other modeling applications, we make a distinction
between response and explanatory variables. Regardless of the situation, the
model for way tables is the same. For example, when modeling response
behavior, explanatory variables, such as demographic ones, may be present
that may be categorical or on an interval scale. In such cases, log-linear
models of type (1) can be employed that incorporate main effects for the
explanatory variables and interactions among explanatory variables and that
response variable.

The simplest case of having just two items reduces (1) to

logP (y) = log(πy) = λ+ λ
[1]
j1

+ λ
[2]
j2

+ λ
[12]
j1j2

, j1 ∈ C1, j2 ∈ C2 . (3)

In the log-linear modeling framework, log-linear models with interactions
may have difficultly dealing with sparse tables that include zero cell frequen-
cies. Using (3) as an example, if a cell of the [ik] marginal table has a zero
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frequency, the corresponding parameter λ
[12]
j1j2

for that cell cannot be esti-
mated. Necessary and sufficient conditions for the existence of the maximum
likelihood estimates (MLE) of the log-linear model parameters, with a focus
on the role of sampling zeros in the observed table, are provided by [24]. Fit-
ted values(MLE) for (3) can be obtained using iterative proportional fitting,
but we cannot fully describe the interaction because some odds ratios are
not estimable. This is not the case for unsaturated AMs. For example, the
RC(M) model described in the next section encounters no problems if there
are zeros in a (marginal) table. Only the univariate marginals need to be
non-zero. The ability of AMs to deal with sparse tables becomes especially
important when we have high-dimensional tables.

3 Association models for two-way tables

Model (3) is saturated (i.e. has 0 degrees of freedom). For a J1×J2 table, in
the classical log-linear modeling framework, there are no models in between
the saturated model and that of independence, which has (J1 − 1)(J2 − 1)
degrees of freedom. A class of non-saturated models is derived by impos-
ing a structure or restrictions on the interaction parameters of a log-linear
model which requires fewer parameters. Fewer parameters leads to more
parsimonious models that fill the gap between the two extreme models (in-
dependence and saturated) and at the same time, offer sound interpretation.
These models are known as dependency or association models (AMs, often
called Goodman’s AMs) and are based on the concept of assigning scores
or estimating scale values for the categories of the classification variables
(items).

For a two-dimensional table, association models are of the form

logP (y) = log(πy) = λ+ λ
[1]
j1

+ λ
[2]
j2

+ σ2ν1j1ν2j2 , (4)

for j1 ∈ C1, j2 ∈ C2, where ν1 = (ν11, . . . , ν1J1)
′ and ν2 = (ν21, . . . , ν2J2)

′

are scores corresponding to the rows and columns of the contingency table,
respectively, and σ2 is an intrinsic association parameter. Notice that in the
literature on association models, the association parameter is usually denoted
by φ and, for row and column scores that are monotone in the same direction,
the sign of φ indicates the direction of the underlying association. The model
is invariant under linear transformation of the row and column scores and
the direction of the scores are generally set such that σ2 is positive. An
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important point is that σ2 reflects the strength of the association and the
row and column scores reflect the structure.

The row and columns scores, ν1 and ν2, respectively, can be fixed (known)
or parameters to be estimated. The simplest association model that considers
both of them fixed, has just one parameter more than the independence
model and is known as the linear by linear (LL) model. If additionally the
scores are equidistant for successive row and column categories, then under
this specific LL model all local odds ratios, which are odds ratios between
adjacent rows and columns, are equal. This is called as the uniform (U)
association model. When the row scores are fixed and column scores are
estimated, the model is called the column effect (C) model. The row effect
(R) model is defined analogously. Models LL, U , C and R are all log-linear.
When both row and column scores are parameters to be estimated, model
(4) becomes the multiplicative row-column effect (RC) model and no longer
has a log-linear structure.

The main effects parameters of model (4) satisfy the corresponding iden-
tifiability constraints in (2) while the scores, whenever they are parameters,
satisfy

J1∑
j1=1

ν1j1 =

J2∑
j2=1

ν2j2 = 0 and

J1∑
j1=1

ν21j1 =

J2∑
j2=1

ν22j2 = 1 . (5)

Since model (4) is invariant under linear transformations of the scores, for
comparability, also in the case of fixed or known scores, scores are trans-
formed to fulfill (5). The intrinsic association parameter in (4) is redundant
and can be set σ2 = 1, abandoning the second set of constraints in (5), as
given by Goodman [28].

An extension of the RC model is the multidimensional row-column or
RC(M) association model, which includes multiple sets of scores for each
item. It is defined as

logP (y) = log(πy) = λ+ λ
[1]
j1

+ λ
[2]
j2

+
M∑

m=1

σ2
mν1j1mν2j2m , (6)

for M ∈ {1, . . . ,M∗}, M∗ = min(I, J) − 1, where scores and association
parameters are assigned to each dimension m, with σ2

1 ≥ . . . ≥ σ2
M ≥ 0,

reflecting that the strength of association accounted for each dimension m is
decreasing in m. Constraints (5) hold for the scores on every dimension, and
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additionally, scores on different dimensions are orthogonal to each other, i.e.,

J1∑
j1=1

ν1j1mν1j1m′ =

J2∑
j2=1

ν2j2mν2j2m′ = 0, for all m 6= m′. (7)

Constraints (5) and (7) are the most commonly used ones, but are not the
only possible ones. Model (6) has (I−M −1)(J−M −1) degrees of freedom
(df) and note that RC(1) = RC and RC(M∗) is an equivalent expression of
the saturated log-linear model given in (3).

The AMs for two-way tables presented in this section can be extended in
a straight forward manner to tables of higher dimensions and we will point
out how the models for high-way tables are the same and different from the
RC(M) association models. Before considering the high-way case, we discuss
estimation and present an example for a 2-way table.

3.1 Estimation and Goodness of Fit of AMs

Maximum likelihood estimation of AMs is the most commonly used method
to fit the models to data and we focus our attention to ways to do this in R
([60]). Models that are log-linear can be fit through packages for generalized
linear models (GLM), in particular the glm function. Models that are non-
linear in their parameters, like the RC(M) model introduced above, require
special packages for their implementation, such as the gnm package of Turner
and Firth [61] or the VGAM of Yee [67]. The implementation of association
models via gnm is extensively illustrated in Section 6.6 of Kateri [40], while
functions for fitting specific AMs are provided in the web-appendix of [40].
Here, we fit AMs using maximum likelihood estimation as implemented in
the R ([60], version 4.0.0) package logmulti ([11]), which is a wrapped for
the more general gnm package.

Goodness of fit (GoF) of AMs can be tested by the standard GoF tests
for contingency table models, i.e., the likelihood ratio statistic (G2) or the
Pearson’s X2. Since the values of the G2 and X2 statistics are strongly
influenced from the sample size, we consider two additional statistics that
give the practical significance and a more intuitive sense of GoF. The value
of G2 from independence can be thought of as a measure of the amount of
dependency in the data. The percent of association accounted for by a model
equals

(G2
ind −G2

model)

G2
ind

× 100,
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where G2
ind and G2

model are the likelihood ratio test statistics for the model
of independence and the model of interest. A second index, the dissimilarity
index (D), equals the proportion of the data that would have to be moved
from one cell to another for the model to fit perfectly. The dissimilarity index
can be computed using frequencies or proportions; namely,∑

i |ni − m̂i|
2n

=

∑
i |pi − p̂i|

2
,

where the sum is over all cells, ni is observed frequency, m̂i is the estimated
expected frequency, pi is the proportion of data in cell i, and p̂i is the esti-
mated probability of being in cell i. The rule of thumb is that a D ≤ .03 is
a good fitting model. We should note that D does not perform well for large
tables, because, to achieve perfect fit, observations that would need move to
an adjacent cell has the same weight as those that would need to be moved
many cells away.

3.2 Example: Who Takes Which MOOCs

The data in Table 1 come from a study examining engagement in massively
open online courses (MOOC) with the goal of determining who is being
served by taking which course ([10]). The data come from MOOCs covering
six different disciplines where all MOOCs except one were offered multi-
ple times. In total, there are 16 course offerings. The topics of the MOOCs
were computer science (CS1, CS2), education (Educ1, Educ2), organic chem-
istry (Chem1, Chem2), business administration on subsistence (Bus1, Bus2,
Bus3), environmental science (Env1 – Env6), and animal and veterinary sci-
ence (Animal). The students’ ages were collected on a category scale of six
age groups.

The models that are relevant to this data set are (4) and (6) with J1 = 16
and J2 = 6. The models were fit to the data using maximum likelihood esti-
mation as implemented in the R package logmulti. Goodness-of-fit statistics
for six models fit to the data are reported in Table 2. For each model, we
report df , G2, p-value, and the two additional statistics discussed in Section
3.1.

The MOOCs and age groups show a significant relationship (G2
ind =

1098.3, df = 75, p ≤ .01). Since G2 may be significant due to large frequen-
cies or extra heterogeneity between students within each of the combinations
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of MOOC by age group, we also fit a model of independence using the Nega-
tive Binomial distribution. This independence model also showed significant
dependency (G2

ind = 101.46, df = 75, p = .02). Furthermore, D is relatively
large for both of these two models. The top two plots in Figure 1 are the
qqplot’s of standardized residuals from the two independence models, and
they show considerable departure from normality for smaller and larger fre-
quencies, which gives us further evidence against independence. Examining
a table of (16×6 =) 96 residuals does not lead to insight into the relationship
between age and MOOCs.

The simplest association model that can be fit to data is the R model,
where we can reasonably assign scores to the column variable (i.e., age). The
two natural options for known scores would be either equidistant for succes-
sive categories or the midpoints of the corresponding age intervals. Neither
of these two models provide satisfactory representations of the association
in the data. The RC(2) association model fits better than any of the sim-
pler models (G2 = 52.17, df = 39, p = .08, the percent association=95%,
D = .02). Furthermore, the bottom right qq-plot plot in Figure 1 shows that
the standardized residuals from the RC(2) model are very close of normal.
The parameter estimates from the RC(1) and RC(2) association models are
plotted in Figure (2) where the category scale values for the MOOCs and
age groups are weighted by the square root of the association parameter
(i.e., ν̂iji1

√
σ̂2
1 and ν̂kjk2

√
σ̂2
2).

Even though RC(2) model is our best model, for the purpose of illustra-
tion, the scale value plots for both the RC(1) and RC(2) models are given in
Figure 2. For both models, the scale values for the courses contrast STEM
and non-STEM courses; that is, at one extreme are the chemistry and com-
puter science courses and at the other extreme the education courses. On
the first dimension of both models, the scale values for student’s age are
ordered from younger to older; however, they are not equally spaced. The
age groups 25-29, 30-39 and 40-49 are relatively close in value in the RC(1)
model but less so in the RC(2) model. From the RC(2) graph we can say
that students aged 18-24 have higher odds of taking STEM courses than the
odds for any of the other age groups. Conversely, the ≥ 60 aged students
have higher odds of taking the education courses than any of the students in
other age groups. Different offerings of the same course tend to have similar
scale values, especially Bus1 & Bus2, Educ1 & Educ2. The odds of taking
one or the other of these courses (regardless of age groups) is close to 1.

As illustrated in this example, the scale values from the RC(1) and RC(2)
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Table 1: Who takes which MOOC: a cross-classification of MOOC courses
by age groups of students who take the courses.

Age Groups
Course 18–24 25–29 30–39 40–49 50–59 ≥60
Animal 33 43 64 30 30 17
Bus1 59 101 100 68 49 28
Bus2 45 57 68 38 21 31
Bus3 20 47 62 32 28 35
Chem1 164 149 174 86 69 48
Chem2 71 52 54 27 18 13
CS1 1472 1472 2068 1110 580 254
CS2 198 199 342 199 124 46
Educ1 13 34 114 117 91 46
Educ2 10 20 77 81 65 37
Env1 92 216 313 154 139 117
Env2 126 265 342 197 176 147
Env3 89 155 217 143 149 114
Env4 90 163 216 99 77 63
Env5 111 175 206 134 109 111
Env6 42 78 119 60 62 72

association models need not be the same. Also for a given model, the scale
values may be reflected (i.e., multiplied by −1) and this is illustrated in the
scale values plots. For RC(1) model on dimensional one, the ages go from
low to high, but for the RC(2) model go from high to low. The scale values
for courses also are reflected in the RC(2) model compared to the RC(1)
model, which leads to the same interpretations for the models.

4 Graphical Models

Log-linear models for categorical data have graphical representations that
are visual representations of theory or scientific information, and they can
be used to determine whether tables can be collapsed over items without
impacting associations ([46, 20]). Graphs also aid us in generalizing the
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Figure 1: QQplot of standardized residuals from models fit to the MOOC
data.
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Figure 2: Plot of estimated scales scale values from RC(1) association model
(top) and RC(2) association model (bottom) fit to MOOC data.
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Table 2: Goodness-of-fit statistics for models fit to the MOOC data in Ta-
ble 1.

Percent of Dissimilarity
Model df G2 p association index
Independence 74 1098.3 < .01 0.00% .09
(Poisson)
Independence 74 101.46 .02 90.76% .10
(Negative Binomial)
R (equidistant scores) 60 291.73 < .01 73.44% .16
R (midpoint scores) 60 313.13 < .01 71.49% .16
RC(1) 56 249.40 < .01 77.29% .04
RC(2) 39 52.17 .08 95.26% .02

RC(M) association models to higher dimensions. Graphical models for log-
linear models are introduced in this section, followed by graphs for RC(M)
association models. Lastly, we add more variables to the graphs to represent
situations where we have moderate to very high dimensional tables (i.e., large
numbers of items).

4.1 Graphs for Log-linear Models

A graph consists of nodes, which for us are variables or items, and edges
or lines connecting nodes indicating possible (non-directional) dependency
between variables. For example, consider a three-dimensional J1 × J2 × J3
contingency table, cross-classifying the categorical variables Y1, Y2, Y3.

Figure 3 contains four simple graphs showing the relationship between Y1,
Y2 and Y3. In this chapter, discrete variables are represented by boxes. The
absence of a line connecting two variables indicates that the two variables
are independent conditional on the rest of the graph. Graph 3(a) does not
contain any edges and this graph represents complete independence. The
presence of a line between two variables only indicates that they may be
dependent conditional on the rest of the graph. Figure 3(b) represents a log-
linear model of joint independence between Y2 and Y1 & Y3, and graph 3(c)
represents a log-linear model of conditional independence between Y1 and Y2
given Y3.
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(a)
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(b)
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Y3

(c)
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Y3

(d)

Y1 Y2

Y3

Figure 3: Graphical models corresponding to log-linear models of (a) com-
plete independence, (b) joint independence, (c) conditional independence,
and (d) 3-way interaction.

Graphical models (a), (b) and (c) are collapsible over variables. For
example, in (b), we can collapse the data over Y2 and this does not change the
dependency between Y1 and Y3; that is, we can simply analyze the marginal
relationship between Y1 and Y3. For model (c), conditional independence of
Y1 and Y2 given Y3, we can collapse over Y2 to study the relationship between
Y1 and Y3, and collapse over Y1 to study the relationship between Y2 and
Y3. Any model that has some form of (conditional) independence can be
collapsed over some set of variables (items); however, this is not the case for
graph (d).

Figure 3 (d) is a model of conditional dependence; that is, none of vari-
ables are independent conditional on the rest of the graph. This graph is
a representation of a log-linear model with all 2-way interactions between
pairs of variables and a model with all 2-way interactions and a 3-way in-
teraction (i.e., a saturated model). For every model there is a unique graph,
but every graph with edges (dependencies) can represent multiple models.
This yields an ambiguity regarding the complexity of the interaction struc-
ture. In this chapter, we use graphs to represent theory and take the most
complex model implied by a graph. For example, Figure 3 (d), which is a
complete graph2, represents the log-linear model with all 2-way interactions

2A complete (sub)graph in one where all variables are directly related to each other.
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and a 3-way interaction.
We can obtain graphical representations for our models such that there is

more of a one-to-one correspondence between graphs and models. Consider
the simpler case of 2 categorical variables. In Figure 4, the graphs (a) and
(d) represent log-linear models of complete independence and dependence,
the latter being a saturated log-linear model. As commented on in Section
3, in this case we have (J1 − 1)(J2 − 1) degrees of freedom with which to
represent the dependency; however, we may not need all of these degrees of
freedom. There are models in between independence and dependence, which
we discuss in Section 3. We introduce an unobserved continuous variable
in our graphs, which are represented by the circles in graphs 4 (b) and (c).
The categorical variables are now conditionally independent given the latent
continuous variable(s). Consider graph (b) in Figure 4. If we collapse over the
continuous variable, we will produce an association between the categorical
variables ([46]). The model for observed data is one of dependence. Graph (b)
is a representation of the LL, U , R, C, and RC(1) models. The differences
depend on whether the scale values are set equal to specific values or are
estimated. For the LL model, both ν1j11 and ν2j21 are set equal to specific
values, for the U models both ν1j11 and ν2j21 are set to equally spaced scores,
for the R (or C) model one set of scores (e.g., νiji1) is set to specific values and
the other set (e.g, ν2j21) is estimated, and for the RC(1) model, both ν1j11
and ν2j21 are estimated. Graph (c) is a representation of RC(M) association
model previously introduced in Section 3 and are discussed below in more
detail below.

4.2 Graphs of the RC(M) Association Model

Figure 4 (b) is a graphical representation of models for two variables corre-
sponding to the U , LL, R, C and RC(1) association models, and Figure 4 (c)
is the representations for the RC(M) model. To represent the AMs, we have
added a continuous variable that is unobserved or latent. These continuous
variables are represented by the circles. Goodman ([28]) first mentioned that
a latent variable may underlie data fit by an RC(1) model, but he never
expanded on this. We provide explicit details about a possible underlying or
latent variable model and use this to generalize the RC(M) model to high
dimensional tables.

Models can be “read” from the graphs. As an example, consider the
RC(1) association models represented by graph (b) in Figure 4. All models
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λ
[12]
j1j2

Figure 4: Graphs for log-linear models for 2-way tables where (a) is a log-
linear model of independence, (b) is the RC(1) association model, (c) is the
RC(M) association model, and (d) is a saturated log-linear model.

for data include a parameter to ensure probabilities sum to 1 (i.e., λ), and

include marginal effect terms for each categorical variables (i.e., λ
[i]
ji

and λ
[k]
jk

).
For the interaction, the lines connecting unobserved continuous and observed
discrete variables are labeled by the category scale values, and the latent
variable Θ1 is labeled by σ2

1. The observed interaction between Y1 and Y2
equals the product of parameters on the path between Y1 and Y2; that is,
ν1j11σ

2
1ν2j21. Likewise, the interaction between Y1 and Y2 represented by

Figure 4 (c) is
∑

m σ
2
mν1j1mν2j2m.

The AMs in Figures 4 (b) and (c) are models of conditional indepen-
dence: the (observed) categorical variables are independent given values on
the unobserved continuous variables. The number of Θm’s corresponds to
the dimensionality of the RC(M) model, which should not be confused with
the dimension of a cross-classification (i.e., the number of variables). Since
the Θms are continuous, if we collapse over the Θms, we may observe a de-
pendency between the categorical variables. On the contrary, we cannot
collapse over one categorical variable to study the relationship between the
other categorical variable and the continuous variable. According to theory
on graphical models, the graphs for the RC(M) models are not collapsible
([46], [20]); however, this is a property that does not hold in a strong sense,
as will be shown in Section 5 in the context of higher-dimensional models.

16



To derive the algebraic model from the graph, we need two assumptions in
addition to conditional independence. First, the observed data y come from a
multinomial distribution, which as mentioned above is a common assumption
for way tables of frequencies. This assumption is not restrictive, because for
inferential purposes, the three standard sampling schemes for contingency
tables (multinomial, product multinomial (i.e. independent multinomials in
each row or column), and independent Poisson in each cell) are equivalent.
We must also assume that the latent variables follow a (multivariate) normal
distribution where the mean and variance are conditional on the response
patterns (i.e., cells of the table); that is,

θ | y ∼MVN(µy,Σy).

Justification for the assumption of a conditional Gaussian distribution for
θ can be found in Chang [12, 13] and [44]. The association parameters of the
RC(M) model are the elements of Σy. Typically, we assume a homogeneous
conditional covariance matrix, i.e., Σy = Σ. Previously, we discussed the
orthogonality identification constraint on the νims for M > 1, which requires
that Σ is a diagonal matrix, Σ = diag(σ2

1, . . . , σ
2
M). The conditional mean

of θm is the sum of the category scale values that are directly related to θm
weighted by σ2

m; that is,

µy =

(
σ2
1

∑
i

νiji1, σ
2
2

∑
i

νiji2 , . . . , σ
2
M

∑
i

νijiM

)′
(8)

The RC(M) association models do not include values of the θms; however,
the models do include parameters that give us the distributional parameters
of θ|y.

5 High Dimensional Tables

High dimensional tables are common, especially when considering questions
on surveys, items on psychological scales, or items on educational tests. Two
problems faced with analyzing high dimensional tables are the large numbers
of (i) 2-way interactions, and (ii) cells. For example, 20 five category items,
there are 20(19)/2 = 190 different 2-way interactions and 520 = 9.536743e+
13 cells in the cross-classification of the items. To deal with the problem
of large numbers of interactions, we generalize of the AMs to large numbers
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of variables. For the second problem where the table is large and data are
sparse, we use pseudo-likelihood estimation. In this section, we tackle both
problems and discuss the connection between AMs and IRT models.

To generalize the association models to high dimensional cross-classifications,
we start with graphs and subsequently discuss the algebraic model. We con-
tinue to only consider two-way interactions, because item response models
using the standard assumption that f(θ) is multivariate normal implies only
two-way interactions between items. We will discuss the similarities and
differences with respect to RC(M) association model, as well as explicitly
show the correspondence of association model parameters and common IRT
models.

5.1 Graphs for High Dimensional Association Models

For high-dimensional tables, we simply add variables to the graphs, as in
Figure 5. Figure 5 has three examples of possible graphs for 6 items. Graph 5
(a) is similar to an RC(1) model, except instead of 2 categorical variables we
have 6. In all graphs in Figure 5, the categorical variables are conditionally
independent given the unobserved continuous variable(s); however, the latent
variables can be dependent. The covariance between latent variables θm and
θm′ conditional on the observed variables is equal to σmm′ . We have changed
our notation slightly and are using σmm rather than σ2

m for variances (i.e.,
association parameters).

If categorical variables are discrete measures of underlying continuous
variables, then it would stand to reason that the scale values for the vari-
ables are the same over the interactions; that is, the scale values would be
homogeneous. For example, in graph 5 (a) the interaction between, say vari-
ables Yi and Yk, would be represented by σ11νiji1νkjk1 and the interaction
between Yi and Y` would be σ11νiji1ν`j`1, both of which involve νiji1 and σ11.

Just as we replaced two-way interaction parameters in a log-linear model
for 2 items by products of association parameters and scale values to get an
RC(M) model, we do the same for association models for high dimensional
tables. The interactions between the categorical variables are the products
of labels of the paths between them. For example, the interactions between
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variables Y1 and Y6 for graphs in Figure 5 are

σ11ν1j11ν6j61 for graph (a)

σ12ν1j11ν6j62 for graph (b)

σ13ν1j11ν6j63 for graph (c).

The latter two involve covariances between the latent variables.

5.2 Algebraic Details and Properties

The most general case where each item is directly related to each of the
latent variables and all latent variables are related to each other leads to the
following complex association model:

P (y) = exp

[
λ+

∑
i

λ
[i]
ji

+
∑
i

∑
k>i

∑
m

∑
m′≥m

σmm′νijimνkjkm′

]
. (9)

This model has an intercept, all main effects, and all possible two-factor
interactions, where the interactions have a multiplicative structure. For the
models to be equivalent to a hierarchical log-linear model of all two-factor
interactions would require the number of terms (dimension) for the RC(Mik)
interaction term of every pair of items Yi and Yk, for i, k = 1, . . . , I, to equal
Mik = min(Ii, Ik)− 1.

A variety of more parsimonious models with a special structure for the
associations among the variables of sound interpretation can be obtained
by considering smaller values for the rank of the interaction terms or/and
homogeneity of scores across interaction terms. Furthermore higher-order
interactions having multiplicative terms among scores for more than two
variables are possible. For the case of three-factor interactions and related
references we refer to [40, Sections 6.7, 6.8.1].

These complex models require a considerable number of identification
constraints; therefore, for the sake of discussion, we restrict our attention to
models where each item is related to only one latent variable, which means
that all interaction terms are of RC(1) type. The simple structures shown in
Figure 5 imply that each item has only one set of νijims that are not all equal
to zero. If Yi is not related to a Θm, then νim = 0. For example, in Figures 5
(b) and (c), there is no edge between Y1 and Θ2 so ν1j12 = 0, j1 = 1, . . . , J1.
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Figure 5: Graphs for log-multiplicative association models for 1, 2 and 3
continuous latent variables (circles) and six observed categorical variables
(squares).
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In AM models, we can have additional edges between say Y1 and other Θs;
however, the simple structures discussed here prove to be sufficient for many
applications.

Association model (9) can be derived from the same assumptions as the
RC(M) models: y is multinomial, θ is conditional Gaussian3, and condi-
tional independence of items given θ. One difference is that the conditional
covariance matrix does not have to be diagonal ([3]). As a result, the means
within response patterns also include responses to other variables; namely,

E(θm|y) = σmm

(∑
i

νijim

)
+
∑
m′>m

σmm′

(∑
k

νkjkm′

)
. (10)

For simple structures, items Yi load on latent variable θm and Yk load on θm′ .
Estimates of θm are based not only on the items directly related to θm, as in
(8), but also those that are indirectly related through θm′ . When σmm′ 6= 0,
measurement can be improved and become more precise by including multi-
ple correlated latent variables ([64, 16]). In addition to the derivation based
on statistical graphical models, model (9) can be derived from an IRT per-
spective ([36, 35, 14, 4, 2]), conditional specification of models [4, 2]), a theory
of ferrimagnetism ([45, 49]), distance based models ([17, 18, 19]), others.

To facilitate the discussion of the models, we use the following 2 dimen-
sional model for 4 categorical variables where variables Y1 and Y2 are directly
related to θ1 and variables Y3 and Y4 are directly related to θ2:

P (y) = exp[λ+
4∑

i=1

λ
[i]
ji

+ σ11(ν1j11ν2j21) + σ22(ν3j32ν4j42) (11)

+σ12(ν1j11ν3j32 + ν1j11ν4j42 + ν2j21ν3j32 + ν2j21ν4j42)].

A log-linear model with all 2-way interactions for 4 five category items could
require (6× 5× 5) = 150 parameters to completely represent the dependen-
cies in data; whereas, the association model with homogeneous scales across
interactions would have at most 23 parameters4. The difference between the
number of parameters of log-linear and AMs increases exponentially for more
items and categories per item.

3The marginal distribution of Θ is a mixture of Gaussian distributions.
4The number of unique parameters for the log-linear model equals (6×4×4) = 96 and

that for the association model equals (4× 4) + 1 = 17.
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Unlike AMs for two-way tables which require more than two categories
per variable, this is not the case for the higher-dimensional models. For
example, model (11) and models that correspond to graphs in Figure 5 (a),
(b) and (c) can be fit to binary variables ([3, 4]).

The identification constraints on the location of marginal effect terms
and the scale values are analogously to the RC(1) model (e.g.,

∑
ji
λ
[i]
ji

= 0
and

∑
ji
νijim = 0) and just one scaling constraint is required for each latent

variable. For example, in (11), possible scaling constraints can be either

σmm = 1 for all m,

or ∑
ji

(νijim)2 = 1 for one i per θm for all m ,

but not both, analogous to the RC(1) model. In example (11), if σ11 = σ22 =
1, then we cannot linearly transform the νijims without changing the values
of the interaction terms. If we fix the variances and re-scale ν1j11 such that∑

ji
ν2ijim = 1, the interaction between variables does not necessarily remain

the same. Placing scaling constraints on both of the σmm and νijim is a
restriction that impacts the goodness-of-fit of the model. For example, if we
set variance to σ11 = 1 and re-scale the ν1j11, then the interaction between
Y1 and Y2 changes,

σ11ν1j11ν2j21 6= 1(ν1j11/c)ν2j21 = (1/c)ν1j11ν2j21,

where c =
√∑

j1
(ν1j11)

2. To achieve equality, either
∑

j1
ν2ij1m 6= 1 or σ11 =

1/c. Whether the scaling constraint is put on σmm or scale values is more
a matter of convenience. For example, for estimation of models for our
example, we found it more convenient to set σmm = 1; however, after the
model has been fit, we can switch to

∑
ji
ν2ijim = 1 and adjust σmm (and

the σmm′) and other scale values. We did the latter in a simulation study
reported below on culpability where we needed to separate the effects of the
strength and structure of the association.

In the standard AMs framework, (11) is an AM having RC(1) type two-
factor interactions and every variable has homogeneous scores (i.e., the same
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scores across all interaction terms involved)

P (y) = exp[λ+
4∑

i=1

λ
[i]
ji

+ φ12ν1j11ν2j21 + φ34ν3j32ν4j42 (12)

+φ13ν1j11ν3j32 + φ14ν1j11ν4j42 + φ23ν2j21ν3j32 + φ24ν2j21ν4j42],

with the additional constraint on certain intrinsic association parameters
φ13 = φ14 = φ23 = φ24 = σ12 (notice that φ12 = σ11 and φ34 = σ22). Such
constraints are unusual for standard AMs, but are found in applications to
square tables (rows and columns are the same categories) and are linked to
latent variables models (e.g., IRT models) later in Section 5.4. In applica-
tions with all variables (items) being measured on the same scale, we find
homogeneity constraints on the scores for each variable and dimension (i.e.,
νijim = νkjkm where ji = jk) that result in symmetric interaction terms.

To understand the physical interpretation of this constraint, consider (12)
under the additional assumption that the scores of all variables are known,
equidistant for successive categories (i.e. νi(ji+1)m − νijim = ci, for all ji =
1, . . . , Ji − 1, with m = 1 for i = 1, 2 and m = 2 for i = 3, 4), which means
that we assume U -type structures for all interactions. In particular for the
(Y1, Y2) partial table when Y3 = j3 and Y4 = j4 we have

θ
[12]
j1j2|i3i4=exp

(
πi1,i2,i3,i4πi1+1,i2+1,i3i4

πi1,i2+1,i3,i4πi1+1,i2,i3i4

)
(13)

=exp
(
φ12(ν1(j1+1)1 − ν1j11)(ν2(j2+1)1 − ν2j21)

)
= exp (φ12c1c2)= θ[12],

while for the other partial tables, the θ[ik]’s, i, k = 1, . . . , 4 with i 6= k, are
defined analogously. Consequently, the conditional local ORs in every partial
table (Yi, Yk) are all equal to θ[ik], for all values of ji and jk (uniform) but
also across all levels of the other items (homogeneous). Thus the underlying
model is the homogeneous U model (see [40, Section 6.7]). Notice that due to
the sum to zero constraints satisfied by the scores, ci 6= ck if Ji 6= Jk. For the
special case of Ji = J , i = 1, . . . , 4, it holds ci = c and the additional equality
constraint among the φ parameters above leads to θ[13] = θ[14] = θ[23] = θ[24],
hence to equality of the corresponding conditional local ORs.

A difference in terms of identification constraints with respect to AMs
for two-way tables with M latent variables (i.e. RC(M) models), is that in
models of type (11) with more than two variables, each variable is directly
related to only one of the M latent variables; whereas, under RC(M) each
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variable is related to all M of them. The orthogonality constraints that are
required for the RC(M), are not required for (11) and Σ can have non-zero
off diagonals. This is not true for all versions of (9), in particular if every
variable is directly related to each and every ΘM , then an orthogonality is
required as well as for underlying bi-factor structures.

An alternative version of (9) that has the same identification constraints
as (11) may have all variables directly related to each of the M latent vari-
ables, except one per latent variable. The variables that are related to just
one M “anchor” the rotation. Similarly, in a factor analysis/IRT model
framework, parameter constraints are imposed to uniquely identify the model
parameters. In a factor model with M latent variables, M2 constraints are
required to obtain a unique solution and avoid the rotational indeterminancy
issue. Among the constraints are those that set the scale of the latent vari-
able. Similarly to what it has been said above for RC(M) models, the scale
of a latent variable is set either by standardizing the latent variable assuming
that is has zero mean and unit variance in the population or by forcing its
scale to be the same as one of the observed variables. Usually, the variable
that best represents the latent variable has its factor loading set equal to one.
The selected variable is known as a “reference” variable. Setting the scale of
the latent variables to one takes care of M of the required restrictions. The
additional ones are imposed on the loading and factor covariance matrices
(e.g. diagonal factor covariance matrix, certain loadings are set to zero).
In exploratory factor analysis, the required restrictions can be imposed on
any of the parameters. Those restrictions will produce an arbitrary set of
factors which can be then rotated to another set of factors that have better
interpretability. In confirmatory factor analysis, the constraints are driven
by the investigator’s research hypothesis. A useful constraint that eases the
interpretation of the factors is to consider that each latent variable has at
least one item that loads solely on that factor (i.e. setting specific elements
of the loading matrix to zero) ([38, 39]). Returning to the AMs framework,
anchoring one item (i.e.,

∑
j ν

2
ijm = 1 and νijm′ = 0 for m′ 6= m) that best

represents the latent variable is a key to fitting non-simple structure models.
With the RC(M) association model, we cannot collapse over an item

and study the relationship between the other item and a latent variable,
because then we would have only one observed variable. This is not true in a
strong sense for more than 2 items. As mentioned previously, νijim represents
the structure and σmm represents the strength of the relationship between
variables. This leads to a semi-collapsible situation. This is illustrated for the
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Figure 6: Mean estimated σ11 and νiji1 parameters from fitting a uni-
dimensional nominal model to data simulated from a nominal item response
model for n = 500 and four category items, with the number of items varying
up to 50.

25



uni-dimensional model, such as Figure 5 (a). If we have 50 items but drop or
collapse over one of them, the structure of the relationship between an item
and the latent variables should not change but the strength of associations
does change ([5]). To illustrate this property, 100 data sets were simulated
for 50 four category items. A nominal IRT model was used to simulate the
data where the slopes (scale values) were drawn from a N(0, 1.5), and the
location (marginal effects) were drawn from a N(0, 2). Values of θ for each
of n = 1000 observation for each of the 100 replications were drawn from
a N(0, 1). For cases where a simulated item did not have observations in
all categories, a new data set was randomly created. The model was fit to
data sets with 50 to 15 items dropping 5 items at a time, and 14 to 5 items
dropping one item at a time. The scaling identification constraint was placed
on the first item (i.e.,

∑
j=1(ν1j1)

2 = 1) and σ11 was estimated.
In Figure 6, the means over replications of association parameters and

scale values are plotted by the number of items in the data set. The estimated
σ11s are larger for small numbers of items and asymptotes down to 0 for large
numbers of items. Recall that σ11 is the conditional variance of θ1 within a
response pattern y (i.e., a cell in a cross-classification of items). When the
number of possible patterns is very large (infinity), only one person can
fall into a cell of the table, so the variance necessarily equals 0. Also in
Figure 6 are the means of the estimated scale values where each line in the
figures corresponds to a different item. The scale values plots are only given
for three of the four categories because νi4i1 = −

∑3
ji=1 νiji1. The lines are

essentially flat. In other words, we can collapse over categorical variables
and the structure between variables remains the same. The only thing that
changes is the strength of the relationship between observed variables (items),
and between items and latent variables. This also holds for mulidimensional
models ([5]). The association between two observed variables, say Y1 and
Y2, is represented in the AM by σmm′ν1j1mν2j2m′ (for m = m and m 6= m′).
As variables are dropped σmm and σmm′ both get larger, but the νijim′ stay
essentially the same. Therefore, associations are larger for fewer items but
the structure remains the same.

5.3 Pseudo-likelihood Estimation

Large numbers of variables result in large, sparse cross-classifications, in
which case maximum likelihood estimation becomes computationally infea-
sible. An alternative is pseudo-likelihood estimation (PLE), which takes a
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large complex problem and reduces it to a number of simpler and smaller
problems ([8, 9, 6, 27]). A joint distribution can be specified by a set of
conditional distributions ([26]) where the conditional distributions are com-
patible and consistent with the joint distribution and imply a unique model
for the joint distribution. Rather than maximize the likelihood of the joint
distribution, PLE for AMs maximize the product of the (log) likelihoods of
one variable conditional on the rest. Pseudo-likelihood estimators are asymp-
totically consistent and normal [6, 27, 37]). The conditional distributions of
(9) for one item given responses to all other items is a discrete choice model
or conditional multinomial logistic regression model. The conditional distri-
bution for item i for individual s is

P (Yis = j|y−i,s) =
exp[λ

[i]
ji

+ νijm
∑

k 6=i

∑
m′ σmm′νkjkm′ ]∑J

j=1 exp[λ
[i]
ji

+ νijim
∑

k 6=i

∑
m′ σmm′νkjkm′ ]

(14)

=
exp[λ

[i]
ji

+ νijmθ̃−i,ms)]∑J
j=1 exp[λ

[i]
ji

+ νijimθ̃−i,ms]
(15)

=
exp[λ

[i]
ji

+
∑

m′ σmm′ θ̆im′s]∑J
j=1 exp[λ

[i]
ji

+
∑

m′ σmm′ θ̆im′s′ ]
(16)

where y−i,s are the responses by person s to all items except item i, and
jk are the categories chosen by individual s. The predictor variable in (15),
θ̃−i,ms, is the weighted sum of person s’s scores on all items except item i;
that is,

θ̃−i,ms =
∑
k 6=i

∑
m′

σmm′νkjkm′ .

Note that θ̃−i,ms depends on individual s. Using this value for θ̃−i,ms, we can
get estimates of λiji and νijim by fitting (15) to the data for item i.

There are multiple σmm′s that need to be estimated, one θ̆im′s for each
σmm′ . The θ̆im′s equal a different weighted sum of persons s’s scale values for
k 6= i, specifically,

θ̆im′s = νijm
∑
k 6=i

νkjkm′ ,

where the sub-script jk indicates the categories chosen by s on item k. The
θ̆im′s differ over individuals, items, and categories. The slopes in (16) are
the same over individuals and items. If we had estimates of θ̆im′s, estimates
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of λ
[i]
ji

and σmm′ can be obtained by fitting (16) to a data for just item i;
however, the σmm′ must be the same over items. We need to also estimate
all possible σmm′s. Fitting only (16) to one item’s data does not yield all
possible σmm′ ’s. For example if m = 1, then only σ1m′s would be estimated
but not say σ23. To impose the restriction on σmm′s over items and estimate
all of them, we vertically concatenate or “stack” the data and fit a single
discrete choice model to the stacked data. In the stacked data set, there are
blocks of Ji lines for each item and each individual.

Of importance is the recognition that if we have the conditionals in (14)
for every item, the set of models are compatible and consistent with a joint
distribution for all the items. The set actually over determines the joint
distribution and thus requires restrictions on the parameters. The restrictions
are that the terms that represent the interaction of i and k are the same
whether of i is modeled as a function of k or k as a function of i. These
terms equal νijimσmm′νkjkm′ , and since σmm′ = σm′m, the restriction is met.
The set of fully conditional distributions given by (14) uniquely imply the
AM in (9) for the joint distribution of Y ([4, 2, 56] and references therein).

For uni-dimensional models, νijim and λ
[i]
ji

are estimated by fitting model
(15) to the data for item i using the current estimates of the scale values
for all k 6= i and the σmm′ parameters to compute the predictor variable
θ̃−i,ms. This is done successively for each item and fitting of the model to
item data is iterated until convergence is achieved. For multidimensional
models, estimates of σmm′s are obtained by fitting (16) to the stacked data
set using current estimates of scale values to compute the θ̆im′s values. For
uni-dimensional models, only item parameters are estimated; whereas, for
multi-dimensional models, the algorithm iterates between up-dating νijim
parameters and σmm′ parameters. If fixed scores are input (e.g., νijim =
0, 1, . . . , (Ji − 1)), then model (16) is only fit once.

We maximize the pseudo-likelihood function by fitting discrete choice
models to data using MLE. In R, discrete choice models can be fit using
mlogit ([15]), mnlogit ([34])), mclogit ([22]), and others. Due to the data
manipulation required and iterative nature of the PLE algorithm, PLE for
log-multiplicative association models has been implemented in the R pack-
age pleLMA (Anderson, 2020). The package mnlogit is used in pleLMA,
because it is efficient and can handle large data sets. Alternative packages,
IssingSampling ([23]) and plRasch ([1]), both implement pseudo-likelihood
estimation but they are more limited especially in terms of models for mul-
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ticategory data and the estimation of category scale values. A version of the
pleLMA package is included in the supplemental material along with data and
code.

PLE for estimation of AMs has been extensively studied for small prob-
lems and yields estimates for both νijm and λij that are nearly identical to
MLE values. Paek ([54, 55]) simulated data from (M)IRT models for differ-
ent numbers of categories (3, 4, 5), different numbers of items (4, 6, 20, 50),
1 to 4 dimensional models, and different sample sizes (200, 500, 1000). For
small numbers of items and uni-dimensional models, she found correlations
between parameter estimates from MLE and PLE equal to .999 to 1.000, and
for multi-dimensional models most correlations were greater than .980. For
larger problems where MLE was not possible, data were simulated from an
(M)IRT model and results were compared. Paek ([54, 55]) found that PLE
estimates recovered the parameters used to simulate the data, were unbiased
and had small root mean squared errors. This was true for different numbers
of categories, different numbers of items, 1 to 4 dimensional models, and
different sample sizes.

Alternative tools for model assessment are required, because the data
for high-dimensional tables is sparse. Additionally, we do not obtain fitted
values for response patterns (i.e., cells in the table), because estimating the
λ-parameters is computationally and numerically challenging even given es-
timates of all other parameters. Some alternative methods are described
Section 6 and others are illustrated in the context of our example; however,
conclude this section by briefly describing the connections between the AMs
and (M)IRT models.

5.4 Connection to IRT Models

The conditional model in (15) has the same form as the nominal response
model, including all of it’s special cases (e.g., models in the Rasch fam-
ily, the two-parameter logistic model, the generalized partial credit model
(GPCM)). The mathematical equivalence between AMs and (M)IRT models
can be proven formally ([56, 5, 45, 49]). From (15), the θ̃−i,ms is person s’s
value on the latent variable based on all items except i; however, after fitting
a model we would use (10) to estimate the mean given a response pattern.
The marginal effect parameters are sometimes referred to as “difficulty” or
location parameters, and rather than denoted by λ

[i]
ji

, they are usually repre-
sented by bij. The scale values νijm are slopes on the latent variables and are
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“discrimination” parameters, often denoted as aim. The following restrictions
on the category scale values lead to common IRT models:

Nominal: νijm = aijm no restrictions
GPCM: νijm = aimxj where xj = fixed scores
Rasch: νijm = xj where xj = fixed scores.

(17)

The fixed scores, xj, are typically set to equally spaced values or consecutive
integers. Note that the conditional (partial) odds ratios are functions of the
association parameters and category scale values. The conditional odds ratio
for items i and k for the nominal model equals

exp[σmm′(νijm − νij′m)(νk`m′ − νkj`′m′)] .

When the xjs equal consecutive integers as is typical for GPCM and Rasch
models, the local partial OR (13) for models in the Rasch family reduce to
exp(σmm′), since ci = 1. Instead of just one value for local ORs in the 2-
way table case, there is one for each latent variable and one for each pair
of latent variables for a total of M(M − 1)/2 + M local conditional ORs.
Regardless of the number of variables, the number of these ORs depends on
the number of latent variables. For the GPCM with consecutive integers, the
local conditional ORs equal exp(σmm′aimakm′); that is, (13) for items i and
k with ci = aim and ck = akm′ .

In the AM framework, there is flexibility in setting the xjs, which can be
set to of non-equally spaced values and different values over items. These pos-
sibilities yield item response models that deviate from the traditional Rasch
and GPCM models. If the ordering of the response options is not clear, the
category scale values from the nominal model can reveal the proper order-
ing and whether the spacing between category scale values is approximately
equal. The scale values from nominal models can show whether a GPCM is
plausible. Alternatively, models can be constructed where some items follow
a GPCM and others a nominal model. There is great flexibility in crafting a
model for data.

6 Sampling Properties

Let denote with ω the parameter vector corresponding to the fitted model.
For example for model (11),
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ω′ = (λ,λ[1],λ[2]λ[3],λ[4],ν11,ν21,ν3,ν42, σ11, σ22, σ12) ,

where λ[i] is a vector with elements λ
[i]
ji

, and νim is a vector with elements
νijim. From the theory of composite likelihood estimators (pseudo-likelihood),

it holds that
√
N (ω̂PL − ω)

d→ N (0, G−1(ω)) , where G(ω) is the Godambe
information matrix [48, 62], (also known as the sandwich information matrix)
given by

G(ω) = H(ω)J−1(ω)H(ω),

where

H(ω) = E

{
− ∂2

∂ω′∂ω
pl(ω;y)

}
,

J(ω) = V ar

{
∂

∂ω′
pl(ω;y)

}
,

and pl(ω;y) is the log pseudo-likelihood function. H(ω) and J(ω) can be
estimated by:

Ĥ(ω̂PL) = − 1

N

∂2

∂ω′∂ω
pl (ω; (y1, . . . ,yN))

∣∣∣∣
ω=ω̂PL

(18)

and

Ĵ(ω̂PL) =
1

N

N∑
n=1

(
∂

∂ω′
pl (ω;yn)

∣∣∣∣
ω=ω̂PL

) (
∂

∂ω′
pl (ω;yn)

∣∣∣∣
ω=ω̂PL

)′
, (19)

respectively.

7 Evaluation and Testing

The pseudo likelihood (PL) estimation framework used here falls within the
composite likelihood (CL) framework which is used for approximating com-
plex full likelihoods. The inference part under CL requires certain modifi-
cations and corrections similar to the ones needed for misspecified models
[53]. Overall goodness of fit test statistics (e.g. likelihood ratio, Wald and
score test) and model selections criteria (e.g. AIC and BIC) can be derived
under the CL estimation framework. Adjusted Wald, score and likelihood
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ratio test statistic for overall fit and nested models under the CL framework
have been developed for models for multivariate clustered data, time series
data and structural equation models [47, 27, 53, 62, 41]. Moreover, the model
selection criteria AIC and the BIC are appropriately adjusted to hold under
CL

7.1 Composite likelihood likelihood ratio test for over-
all fit

The fit of the model can be assessed by constructing a likelihood ratio test
for testing H0 : πr = πr(ω) against H1 : πr subject to

∑
πr = 1, where ω

is a vector of all independent parameters, r runs over all possible response
patterns (cells of the contingency table), and πr is the probability of response
pattern r. In particular, πr(ω) is defined by a model such as (6) or (11). The
maximum of log-likelihood (lnL) under H0 and multinomial sampling is

lnL0 =
∑
r

nr ln π̂r = N
∑
r

pr ln π̂r , π̂r = πr(ω̂)

and the maximum of lnPL under H1 (saturated model) is

lnL1 =
∑
r

nr ln pr = N
∑
r

pr ln pr ,

where nr is the number of times response pattern r occurs in the sample,
pr = nr/N and N is the sample size. The likelihood ratio (LR) test statistic
is

χ2
LR = 2

∑
r

nr(ln pr − ln π̂r) = 2N
∑
r

pr(ln pr − ln π̂r) . (20)

Under H0 we need to work out its distribution. If full information ML
is used then this is distributed approximately as χ2 with degrees of freedom
equal to the number of independent response patterns minus one minus the
number of elements of ω.

Alternatively, one can use the goodness-of-fit (GF) test statistic

χ2
GF =

∑
r

[(nr −Nπ̂r)2/(Nπ̂r)] = N
∑
r

(pr − π̂r)2/π̂r . (21)

Both statistics (20) and (21) have the same asymptotic distribution under
H0.
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In principle, these tests are possible to use with full information ML
(FIML). They cannot be used with the pseudo-likelihood approach because
this does not maximize an overall likelihood function, so the π̂r are not di-
rectly computed. In practice, however, these tests do not work well because
in real data there are often many zero and small frequencies nr which will
distort the approximation to the chi-square distribution [57].

Nevertheless, under the pseudo-likelihood estimation framework the pseudo-
likelihood ratio test (PLRT) is written as

χ2
PLLT = 2× (pl(ω̂;y)− pl(ω̃;y)), (22)

where pl(ω̂;y) and pl(ω̃;y) are the log pseudo-likelihood values under the
alternative and null hypothesis respectively.

It has been shown that the asymptotic distribution of composite likeli-
hood (pseudo-likelihood) ratio statistic is a weighted sum of χ2

1 distribution
[47, 27, 53, 62, 41]. We leave the development and studying of the perfor-
mance of PLRT for testing overall fit and nested association models for future
research.

7.2 Composite Likelihood Model Selection Criteria

Based on the results of [63], the Akaike pseudo-likelihood (PL) information
criterion, AICPL for the CL framework is defined as:

AICPL = −pl (ω̂PL; y) + tr(Ĵ(ω̂PL)Ĥ−1(ω̂PL)), (23)

and, based on the results found in [25], the PL Bayesian information criterion,
BICPL, is defined as:

BICPL = −2pl (ω̂PL; y) + tr(Ĵ(ω̂PL)Ĥ−1(ω̂PL))× logN , (24)

where ω̂PL is the pseudo likelihood estimate under the hypothesized model,
and tr(Ĵ(ω̂PL)Ĥ−1(ω̂PL)) defines the number of effective parameters. The
model with the smallest AICPL or BICPL is selected.

8 Example

The data used here, the DASS data (retrieved July, 2020 from OpenPsycho-
metrics.org), consist of responses collected during the period of 2017 – 2019
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to 42 items, and of the 38,776 respondents, only a random sample of 1,000
were used in this example. The items were presented online to respondents
in a random order. The items included in the DASS data are from scales
designed to measure depression (d1–d14), anxiety (a1–a13), and stress (s1–
s15). For each item, respondents were asked to consider the last week when
making their responses using the following categories:

1. Did not apply to me at all

2. Applied to me to some degree, or some of the time

3. Applied to me to a considerable degree, or a good part of the time

4. Applied to me very much, or most of the time

The items are given in the appendix and in the online supplemental material,
along with the data and R code used to fit the models to the data.

We used pseudo-likelihood estimation in this example with a relatively
strong convergence criterion. We deem that a model has converged if the
item with the largest change in the maximum likelihood between iterations
is less than 1e − 6, which also yields changes in many parameters on the
order of 1e−10. The convergence information is given in Table 3, number of
iterations (“#iter”) and the value of the convergence criterion. The Rasch
and independence models were only fit once; therefore, we report the con-
vergence information from the mnlogit output from the stacked regression.
Parameters estimates were close to the final estimations in approximately 5
iterations and the algorithm achieves convergence in less than or equal to
15 iterations. The xj values for each item for the Rasch and GPCM models
and the starting values for the νijm parameters for the Nominal model were
−0.1035098, −0.03450328, 0.03450328, and 0.1035098; that is, they sum to
zero and are equally spaced.

An independence log-linear model was fit to the data as a baseline model.
One and three-dimensional models corresponding to Rasch, GPCM, and
Nominal models were fit to the data. Table 3 contains basic summary statis-
tics for each model, including the number of unique parameters estimated
(′# of params), the maximum of the log of the pseudo-likelihood (MLPL)
function, and pseudo-likelihood information criteria, AIC and BIC (smaller
is better). As expected, the uni-dimensional models fit considerably worse
than the 3-dimensional models and will not be considered further. Among
the 3 dimensional models, the Rasch model is not selected whether using
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the AIC (tends to select more complex models) or the BIC (tends to select
simpler models). The M = 3 Nominal model has the smallest AICpl and
the GPCM has the smallest BICpl. We will further study the results of the
3-dimensional Nominal and GPCM models.

Table 3: Global summary statistics and convergence information for models
fit to the DASS data.

# of Fit Statistics Convergence
Model M parms MLPL AICPL BICPL criterion #iter
Independence 1 126 -56146 56272 113162 0 5
Rasch 1 127 -44609 44736 90095 0 6
GPCM 1 168 -44240 44408 89641 2.5e-07 14
Nominal 1 252 -44069 44321 89879 1.6e-07 14
Rasch 3 132 -42529 42661 85969 4.4e-07 6
GPCM 3 171 -42258 42429 85698 3.6e-07 14
Nominal 3 255 -42030 42285 85822 2.5e-07 15

8.1 Measures of Item Fit for the DASS Data

The analyses in this section are a combination of statistics and graphics at
the item level. In Table 4 are the maximum of the likelihoods for each item
from fitting models to each item in the PLE algorithm. These are given for
the Nominal model and GPCM along with the differences between the mod-
els’ values. These differences (i.e., ∆ or −2∆) do not meet the regularity
conditions for these to be chi-square distributed because the values of the
predictor variables are different for the GPCM and Nominal models (i.e.,
different data). However, ∆ still provides information regarding which mod-
els are better fitting particular items. The sum over items of the maximum
likelihoods in Table 4 equals a model’s MLPL. Table 5 further summarizes
the item fit statistic and contains the proportion of items within a scale that
fall within ranges of the maximum likelihood values. From Tables 3 and 5,
in general the items from the nominal model have larger values than items
fit by the GPCM (larger is better). Furthermore, the depression items tend
to be fit better than the items from the anxiety scale, and the items from
the stress scale are the worse fit. Based on the difference in Table 4, some
items appear to be fit equally well by the GPCM and Nominal model. In
particular, the ∆’s for d14, a4, and a9 equal 1.85, 1.37, and 1.77, respectively;
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however, items d6, d7 and a10 all have the largest ∆ values, which suggests
that the Nominal model should be used (at least for these items).
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Table 5: Summary of proportion of items fit in terms of ranges of the values
of the items’ maximum of the log-likelihoods.

Range of log-likelihoods
Model Scale > −799 −800 to −899 −900 to −999 < −1000
Nominal Depression .07 .29 .36 .29

Anxiety .00 .08 .38 .54
Stress .00 .00 .13 .87

GPCM Depression .00 .36 .36 .29
Anxiety .00 .08 .38 .54
Stress .00 .00 .07 .93

The difference between the GPCM and Nominal models is that the for-
mer has linear restrictions on the scale values. To determine whether this
restriction is reasonable, we first examine statistics and then graphics. For
the nominal model, a measure how strongly an item is related to the latent
variable that is is directly related to is ηi ([3])

ηim =

√∑
ji

ν2ijim

. When the location identification constraint is
∑

j νijm = 0, ηim is pro-
portional to the standard deviation of νijms. Alternatively, we can fit the
GPCM model to the data and examine the âim parameters, which when
νijm are equally spaced will be highly correlated with ηims. In our example,
r(ηim, âim) = .996, which suggests that the νijm maybe equally spaced and
the xj’s used to fit the GPCM model are reasonable for the data. Computing
ηim or aim only requires fitting one model. The ηims and âims are given in
Table 6. Whether using ηim or âim, the items that are most strongly related
to their respective latent traits are d4, d7, and a10, which indicate that both
models are identifying the same items are being highly related to the latent
variable and therefore to each other. These statistics indicate the magnitude
of association between items within a scale. For example, among the depres-
sion items, the relationship between d4 (“I felt sad and depressed”) and d7
(“I felt that life wasn’t worthwhile”) is larger than that from any other two
items, and the smallest is between a1 (“I was aware of dryness of my mouth”)
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and a6 (“I felt scared without any good reason”). Comparing across scales,
it appears that the items on the depression scale are more highly related to
the depression trait and between each other (mean âi = 5.08), followed by
anxiety items related to the anxiety trait (mean â = 4.14). The least strongly
related to the latent trait and among each other are the stress items (mean
â = 4.08).

Table 6: Item statistics: The slopes âim from the GPCM and the ηim statis-
tics from the Nominal models, which reflect the strength of the relationship
between the items and the latent variables, as well as between items them-
selves.

item ai1 ηi1 item ai2 ηi2 item ai3 ηi3
d1 4.77 0.77 a1 2.14 0.34 s1 5.03 0.83
d2 3.59 0.57 a2 4.21 0.68 s2 4.20 0.66
d3 5.71 0.89 a3 4.17 0.64 s3 4.21 0.66
d4 6.60 1.05 a4 5.67 0.88 s4 4.70 0.74
d5 4.63 0.74 a5 3.65 0.61 s5 4.46 0.73
d6 5.62 0.91 a6 2.41 0.37 s6 2.62 0.41
d7 7.45 1.19 a7 5.24 0.81 s7 2.96 0.47
d8 4.29 0.69 a8 3.67 0.63 s8 4.58 0.72
d9 4.73 0.74 a9 3.28 0.51 s9 4.21 0.68

d10 4.00 0.63 a10 6.00 0.94 s10 4.24 0.68
d11 5.80 0.89 a11 5.48 0.85 s11 3.66 0.57
d12 5.03 0.78 a12 4.10 0.64 s12 3.37 0.52
d13 5.56 0.86 a13 3.79 0.58 s13 4.88 0.76
d14 3.32 0.54 s14 3.72 0.59

s15 4.35 0.67

To further investigate whether the GPCM or Nominal models are better
for particular items, we examine the scale value estimates from the nominal
model to see if they are indeed linear with respect to equally spaced numbers.
Estimated scale values from the nominal model (solid circles and lines) can
be plotted against integers with linear regression drawn (dashed lines) in the
same plot. Examples for four items are given in Figure 7. The categories
for all items are clearly ordinal and increase with values of the integers. The
values for aggression item a9 (upper left) are coincident with the regression
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line, which from Table 4 has ∆ = 1.77. The scale values for the other items
a10, d7 and d8, deviate from their regression lines and had ∆ values of 12.37,
10.93, and 7.99, respectively. Scale values for item a9 and possibly item d8
might be satisfactorily modeled using equally spaced category scores as in
the GPCM. Another aspect to consider is slope of the lines, which would
correspond to aim in a GPCM model. Among these four items, a9 (smallest
slope) appears to be more weakly related to it’s the latent variable; whereas,
item d7 (the steepest slope) is the most strongly related to it’s latent variable.
These results further confirm our conclusions based on statistics in Table 6.

The last analyses looks at the correspondence between data and fitted
values (probabilities). In logistic regression with continuous predictors and
in IRT, the continuous values can be collapsed into groups or bins. Estimates
of θm were computed using (10) and then grouped into 10 categories. The
observed proportions within a group who select a category within a group
and the fitted probabilities for the group were plotted against the mean of
the continuous θ̂m for the groups. Two examples of such plots are given
in Figure 8 where the data are points and lines are fitted values from the
Nominal model (one line per category). Item d7 has the largest log-likelihood
value in Table 4 and the largest ηim and âim in Table 6. This appears to be the
item fit best according to our statistics and there is a close correspondence
between the fitted probabilities (lines) and the observed proportions (points).
Item s6 has the smallest log-likelihood and one of the smallest ηi and âi, which
indicate that this items in one of the fit worse by the model. The model
for item s6 under predicts the first (squares) category and last (diamonds)
category, which further confirms that this item is not fit well by the Nominal
model. Item s6 is not fit well by the nominal model and will not fair any
better under a GPCM.

Computing θ̂m using (10) makes use of responses to all items where items
were weighted by the conditional covariances. Since we set σmm = 1 for
identification, we actually estimated conditional correlation matrices between
traits within response pattern. These estimated conditional correlation ma-
trices from the Nominal and GPCM models are very similar,

Σ̂nom =

 1.000 0.038 0.094
0.038 1.000 0.290
0.094 0.290 1.000

 and Σ̂gpc =

 1.000 0.047 0.099
0.047 1.000 0.299
0.099 0.299 1.000

 ,

where the subscript nom is for the Nominal model and gpc is for the GPCM.
The conditional correlations between depression and anxiety and between
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Figure 7: Estimated scale values νijm (solid points and lines) from the Nom-
inal response model for two aggression items (top) and two depression items
(bottom) plotted against integers with linear regression lines (dashed lines).

41



−5 0 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Depression 7 : Observed/Estimated Proportions nominal model

Mean of Theta Group

O
b
s
e
rv

e
d
/E

s
ti
m

a
te

s
 P

ro
b
a
b
ili

ty

−5 0 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Stress 6 : Observed/Estimated Proportions nominal model

Mean of Theta Group (theta3)

O
b
s
e
rv

e
d
/E

s
ti
m

a
te

s
 P

ro
b
a
b
ili

ty

Figure 8: For depression item d7 (top) and stress item s6 (bottom), observed
proportions (points) and fitted probabilities (lines) are plotted against the
mean of θm where estimate of θ̂m has been collapsed in to groups. Symbols
for categories are 1=squares, 2=dots, 3=triangles, and 4=diamonds
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depression and stress appear relatively small.
Small conditional correlations do not imply that the marginal correlations

are small. The marginal correlation matrices between θ̂m from the Nominal
and GPCM model are

R̂nom =

 1.000 0.774 0.827
0.774 1.000 0.954
0.827 0.954 1.000

 and R̂gpc =

 1.000 0.781 0.830
0.781 1.000 0.957
0.830 0.957 1.000

 .

Table 7: Alternative models for DASS data with M = 2 where stress and
anxiety are one scale, and M = 3 where σ12 = 0.

Fit Statistics Convergence
Model M #parm MLPL AICPL BICPL criteria #iter
Rasch 2 129 -42840 42969 86571 4.4e-07 6
GPCM 2 169 -42490 42659 86147 3.2e-07 13
Nominal 2 253 -42265 42518 86278 5.1e-07 13
Rasch 3 131 -42536 42667 85983 4.2e-07 6
GPCM 3 170 -42268 42438 85711 3.2e-07 14
Nominal 3 254 -42036 42290 85827 6.7e-07 15

The order in terms of magnitude of the marginal and conditional correla-
tions have the same pattern (i.e., largest is for anxiety and stress, and the
smallest is for depression and anxiety), but are considerably larger than the
conditional values.

The large marginal correlations between anxiety and stress suggest that
perhaps these are not distinct constructs and a two dimensional model maybe
sufficient. The data were re-analyzed using a two dimensional Rasch, GPCM
and nominal model, which each has 2 fewer parameters. The statistics for
these models are reported in Table 7, but the new models fit the data worse
than our original three dimensional models (i.e., orginal models have smaller
AICPL and BICPL. This results occurred because the conditional correla-
tions (i.e., .290 and .299) are relatively small. It is important to point out
that We do not set the marginal correlations, but rather the conditional cor-
relations (or covariances). If a conditional correlation is close to 1, then a
2-dimensional model might be better than a 3-dimensional one.
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In conclusion, our analysis confirmed our conjecture that the items repre-
sent three correlated constructs, as well as the excepted ordering of the cat-
egory scores. For some items, the relative spacing between items is roughly
equal but not for all, which suggest that the nominal model is the best model.
We also detected some items that did not fit the data very well (e.g., s6). The
items on the depression scale are more closely related to the latent variable
of depression, and thus they are also more closely related to each other. The
stress items have weaker association with the stress latent variable and also
have weaker associations between the stress items themselves. Due to small
values of σ̂mm′ for depression and anxiety and for depression and stress, the
estimated value of depression depends mostly on the responses to the depres-
sion items. On the other hand, the larger value of σ̂mm′ for stress and anxiety,
indicate that each provide more information in the estimating of values on
the stress and anxiety constructs.

9 Conclusion/Discussion

When there are interactions between categorical variables, the AMs presented
in this chapter are just one way to describe the nature and strength of asso-
ciations. Other possibilities not covered in this chapter and often missing in
the literature on AMs include (multiple) correspondence analysis ([33, 32]),
optimal scaling ([50]), and dual scaling ([52, 51]), which are all scaling meth-
ods that in the case of 2-way tables are all essentially the same and yield
very similar results. For a history of these methods see [50]). These scaling
methods are data analytic techniques without distributional assumptions and
statistical tests of model goodness-of-fit to the data. Other related methods
that are statistical models are canonical correlation models ([30]) and latent
class models. For 2-way tables, latent class models with 2 latent classes and
the correlation models yield similar results.

The AMs discussed here provide useful representations of interactions
between categorical variables; however, they have also been derived from
an underlying theoretical model (e.g., IRT). Although we focus on models
with an underlying simple structure, the log-multiplicative AMs afford more
complex structures, including models where items load on multiple latent
variables more exploratory analysis and bi-factor structures. We can also
add covariates to the AMs. Pseudo-likelihood estimation can be used for
these more complex structures.
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The data analysis examples illustrate how measures of fit such as item
log-likelihood differences, transformed scores, fitted proportions can be used
to check item misfit, and strength of an item in measuring a latent variable.
Furthermore, AM provide information about the arbitrary selected scores
when choosing the response categories of an item. This is also what IRT
modelling tries to achieve by estimating discrimination coefficients for each
item or each score in the nominal case. Goodness-of-fit tests and model
selection criteria can be developed under the pseudo-likelihood estimation
framework presented here to test overall fit and select among nested and
non-nested models.

The connection between IRT and association models provides multiple
insights on the same data analysis problem, i.e. on how to model and inter-
pret associations depending on the aim of our analysis. The availability of
statistical software and the extension to high-dimensional tables for multi-
category variables is a very useful tool to data analysts who want to have the
flexibility of choosing and estimating a suitable model to high dimensional
data.

Appendix A: R Code for Estimating Models

To facilitate the use of the models and for reproducible we have included R
code and data for results presented in this chapter. Some are below and all
are available on the online book supplemental material.

2-way Tables

The code used to produce results presented for the MOOC example for the
is available on the book’s online supplemental material, as well a function
that computes various fit statistics reported.

Higher Way Tables using pleLMA package

To aid in fitting the AM models for moderate to large tables for dichotomous
or multi-category variables described in this paper, we have written a package
that uses pseudo-likelihood estimation to fit models to data. Note that “phi”
in the pleLMA package is what we have called “Σ” in this chapter.

# Install and load
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R/pleLMA_0.1.0.tar.gz

library(pleLMA)

# Set up data

data(dass)

inData <- dass

# Trait by trait adjacency matrix

inTraitAdj <- matrix(c(1,1,1, 1,1,1, 1,1,1), nrow=3 ,ncol=3)

# Item by trait adjacency matrix

d <- matrix(c(1, 0, 0),nrow=14,ncol=3,byrow=TRUE)

a <- matrix(c(0, 1, 0),nrow=13,ncol=3,byrow=TRUE)

s <- matrix(c(0, 0, 1),nrow=15,ncol=3,byrow=TRUE)

das <- list(d, a, s)

inItemTraitAdj <- rbind(das[[1]], das[[2]], das[[3]])

# Fit models with defaults

# independence

ind <- ple.lma(inData, inItemTraitAdj, inTraitAdj, model.type="independence")

# rasch

r3 <- ple.lma(inData, inItemTraitAdj, inTraitAdj, model.type="rasch")

# gpcm

g3 <- ple.lma(inData, inItemTraitAdj, inTraitAdj, model.type="gpcm")

# nominal

n3 <- ple.lma(inData, inItemTraitAdj, inTraitAdj, model.type="nominal")

# some functions for Nominal and GPCM models

# -- output available

summary(n3)

# -- summary of model fit, input, and global statistics

summaryModel(n3)

# -- more details on convergence
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converged <- convergence.stats(n3$item.log, n3$nitems, n3$nless)

iterationPlot(history=n3$item.log, n3$nitems, n3$ncat, n3$nless,

n3$ItemNames)

iterationPlot(history=n3$phi.log, n3$nitems, n3$ncat, n3$nless,

ItemNames=n3$ItemNames, Maxnphi=n3$Maxnphi,

PhiNames=n3$PhiNames)

# --- For plot of scale values versus integers for Nominal models

scalingPlot(n3)

# -- Matrix of max loglike and estimated parameters for each item

n3$estimates

# -- Estimated conditional correlation matrix

n3$Phi.mat

# -- Estimate of latent variables

theta.n3 <- theta.estimates(n3, inData, scores=n3$estimates)

Appendix B: DASS Data

For each item, respondents were asked consider the last week when making
their responses using the rating scale

1. Did not apply to me at all

2. Applied to me to some degree, or some of the time

3. Applied to me to a considerable degree, or a good part of the time

4. Applied to me very much, or most of the time

Depression Scale:

d1 I couldn’t seem to experience any positive feeling at all.

d2 I just couldn’t seem to get going.
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d3 I felt that I had nothing to look forward to.

d4 I felt sad and depressed.

d5 I felt that I had lost interest in just about everything.

d6 I felt I wasn’t worth much as a person.

d7 I felt that life wasn’t worthwhile.

d8 I couldn’t seem to get any enjoyment out of the things I did.

d9 I felt down-hearted and blue.

d10 I was unable to become enthusiastic about anything.

d11 I felt I was pretty worthless.

d12 I could see nothing in the future to be hopeful about.

d13 I felt that life was meaningless.

d14 I found it difficult to work up the initiative to do things.

Anxiety Scale:

a1 I was aware of dryness of my mouth.

a2 I experienced breathing difficulty (eg, excessively rapid breathing, breath-
lessness in the absence of physical exertion).

a3 I had a feeling of shakiness (eg, legs going to give way).

a4 I felt that I was using a lot of nervous energy.

a5 I had a feeling of faintness.

a5 I perspired noticeably (eg, hands sweaty) in the absence of high temper-
atures or physical exertion.

a6 I felt scared without any good reason.

a7 I had difficulty in swallowing.
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a8 I was aware of the action of my heart in the absence of physical exertion
(eg, sense of heart rate increase, heart missing a beat).

a9 I felt I was close to panic.

a10 I felt terrified.

a11 I was worried about situations in which I might panic and make a fool
of myself.

a12 I experienced trembling (eg, in the hands).

Stress Scale:

s1 I found myself getting upset by quite trivial things.

s2 I tended to over-react to situations.

s3 I found it difficult to relax.

s4 I found myself in situations that made me so anxious I was most relieved
when they ended.

s5 I found myself getting upset rather easily.

s6 I found myself getting impatient when I was delayed in any way (eg,
elevators, traffic lights, being kept waiting).

s7 I felt that I was rather touchy.

s8 I found it hard to wind down.

s9 I found that I was very irritable.

s10 I found it hard to calm down after something upset me.

s11 I feared that I would be thrownnoff by some trivial but unfamiliar task.

s12 I found it difficult to tolerate interruptions to what I was doing.

s13 I was in a state of nervous tension.

s14 I was intolerant of anything that kept me from getting on with what I
was doing.

s15 I found myself getting agitated.
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