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Graphical Models

Statistical Physics (Gibbs, 1902). In large systems of particles, each particle
occupies a site and can be in different states. The total energy of the system
is composed of an external potential and a potential due to interactions of
groups of particles. It is assumed that particles that are close to each other
(i.e., they are “neighbors”) interact while those that are not close to each
other do not interaction.

Genetics & Path Analysis. (Wright, 1921, 1923, 1934). In studying the
heritability of properties of natural species, graphs were used to represent
directed relations. Arrows point from a “parent” to a “child”. These ideas
were taken up by Wold (1954) and Blalock (1971) in economics and social
sciences and lead to what we know as path analysis.

Interactions in 3–way contingency tables. Barlett (1935). The notion of
interaction in contingency tables studied by Barlett is formally identical to the
notions used in statistical physics. The development of graphical models for
multi-way contingency data stems from a paper by Darroch, J.N., Lauritzen,
S.L., & Speed, T.P. (1980).
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Usefulness of Graphical Models

Graphical models are useful and are widely applicable because

1 Graphs visually represent scientific content of models and thus
facilitate communication.

2 Graphs break down complex problems/models into smaller and
simpler pieces that can be studied separately.

3 Graphs are natural data structures for digital computers.

Darroch, J.N., Lauritzen, S.L., & Speed, T.P. (1980). Markov fields and
log-linear models for contingency tables. Annals of Statistics, 8, 522–539.

Edwards, D. (2000). Introduction to Graphical Modeling, 2nd Edition. NY:
Springer–Verlag.

Lauritzen, S.L. (1996). Graphical Models. NY: Oxford Science Publications.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics, 2nd
Edition. Chichester: Wiley.
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Graphical Models & Contingency Tables

We’ll be using graphs to

1 Help determine when marginal and partial associations are the same
such that we can collapse a multi-way table into a smaller table (or
tables) to study certain associations.

2 Represent substantive theories and hypotheses, which correspond to
certain loglinear/logit models.

Some terminology & definitions (common to all graphical models). . .
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Terminology & Definitions

Vertices (or “nodes”) are points that represent variables.

Edges are lines that connect two vertices.

The presence of an edge between two vertices indicates that an association
exists between the two variables.

X
s

Y
s

The absence of an edge between two vertices indicates that the two
variables are independent.

X
s

Y
s

We will be (mostly) restricting our attention to undirected relationships, so
our lines won’t have arrows on them (lines with arrows represent directed
relationships).
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More Terminology & Definitions

A Graph consists of a set of vertices and edges.

Path is a sequence of edges that go from one variable to another.

X
s

Y
s

Z
s

Separated. Two variables are said to be separated if all paths between
the two variables intersect a third variable (or set of variables).

X
s

Y
sX

s

Z
s❳❳❳❳

✘✘✘✘❳❳❳❳
✘✘✘✘
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Even More Definitions

A Clique is a set of vertices (variables) where each variable is connected to
every other variable in the set.

W
s

X
s

Y
s

Z
s�

�
��

❅
❅

❅❅

This is also known as a “complete graph” and if this is part of a larger
graph, a “complete subgraph”.

Fundamental Result (cornerstone of graphical modeling): Two
variables are conditionally independent given any subset of variables
that separates them.
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Graphs for Log-linear Models of. . .

The graph for the Complete Independence, (X,Y,Z)

Y
s

X
s

Z
s

The graphs for Joint Independence,
(XY,Z)

Y
s

X
s

Z
s�

�

(XZ,Y )

Y
s

Xs

Z
s

❅
❅

(X,ZY )

Y
s

X
s

Z
s
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Graphs for Conditional Independence

The graphs for Conditional Independence:

(XY,XZ)

Y
s

X
s

Z
s�

�❅
❅

(XY, Y Z)

Y
s

X
s

Z
s�

�

(XZ,Y Z)

Y
s

X
s

Z
s

❅
❅
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Graphs for 3–Way Association model

The graph for 3–Way Association model, (XYZ):

Y
s

X
s

Z
s�

�❅
❅

This is also a graph for Homogeneous Association, (XY,XZ,YX), which is
also a model of dependence.
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Association Graphs & Log-linear Models

All Log-linear models have graphical representations.

All independence log-linear models imply a unique graph, but not all
dependence log-linear models have unique graphical representations.

Each graph implies at least one log-linear model. Unless otherwise
specified, the model “read” from a graph will the most complex one.

What is the log-linear model for this graph?
W
s

X
s

Y
s

Z
s�

�
��

❅
❅

❅❅
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More Association Graphs & Log-linear Models

What is the log-linear model for this graph?

r r r

r r r

r

A X Y

S E C

T

❅
❅
❅

❅
❅
❅�

�
�

�
�
�

❏
❏❏

✡
✡✡
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More Association Graphs & Log-linear Models

What is the graph for this log-linear model?

(WY, YZ, ZX)

Are there other log-linear models with this graphical representation?

What is the graph for this log-linear model?

(WXY,WXZ)
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Collapsibility in 3–Way Tables

Under certain conditions, marginal associations and partial associations are
the same (i.e., the partial odds ratios equal the marginal odds ratios).

The collapsibility condition for 3–way tables is

For 3–way tables, X-Y marginal and partial odds ratios are iden-
tical if either

Z and X are conditionally independent, or
Z and Y are conditionally independent.

In other words,

The X-Y marginal and partial odds ratios are identical if either
the

Log-linear model (XY,ZY ) holds, or
Log-linear model (XY,XZ) holds.
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Collapsibility in Graphical Terms

In terms of graphs,

The X-Y marginal and partial odds ratios are identical if either of
the following graphical models (or simpler ones) hold

Y
s

Xs
Z
s�

�❅
❅

or

Y
s

Xs
Z
s�

�

Demonstration: On the next page are the partial (conditional) odds ratios
and the marginal odds ratios computed based on fitted values from various
log-linear models that we fit to the blue collar worker data.
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Example of Collapsibility

Observed and fitted values from selected models:
no

Manage Super Worker nijk M,S,W MS,W MS,MW MSW

bad low low 103 50.15 71.78 97.16 102.26
bad low high 87 82.59 118.22 92.84 87.74
bad high low 32 49.59 27.96 37.84 32.74
bad high high 42 81.67 46.04 36.16 41.26
good low low 59 85.10 63.47 51.03 59.74
good low high 109 140.15 104.53 116.97 108.26
good high low 78 84.15 105.79 85.97 77.26
good high high 205 138.59 174.21 197.28 205.74

Partial and marginal odds ratios computed using fitted values.

Partial Marginal
Odds Ratio Odds Ratio

Model W–S M–W M–S W–S M–W M–S
(M,S,W ) 1.00 1.00 1.00 1.00 1.00 1.00
(MS,W ) 1.00 1.00 4.28 1.00 1.00 4.28
(MS,MW ) 1.00 2.40 4.32 1.33 2.40 4.32
(MS,WS,MW ) 1.47 2.11 4.04 1.86 2.40 4.32
(MSW ) level 1 1.55 2.19 4.26 1.86 2.40 4.32
(MSW ) level 2 1.42 2.00 3.90
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Collapsibility & Logit Models

The collapsibility condition for log-linear models applies to logit models as well.

Example: Problem 5.14 (page 138). Data from NCAA study of graduation rates
of college athletes:

Race Sex Graduates Sample Size
White women 498 796
White men 878 1625
Black women 54 143
Black men 197 660

The best logit model for these data is

logit(πij) = α+ βR
i + βS

j

Recall that exp(βS
f − βS

m) equals the odds ratio for graduation and gender of the
athlete holding race fixed; that is,

θSG(i) = exp(βS
f − βS

m)
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Collapsibility & Logit Models (continued)

The logit model logit(πij) = α+ βR
i + βS

j corresponds to the no 3–factor
association log-linear models; that is, (RS,RG,SG) where G = whether
the student athlete graduated or not.

If the logit model
logit(πij) = α+ βS

j

had fit, which corresponds to the (RS,SG) log-linear model, then we
could have studied the gender–graduation relationship by looking at the
gender × graduation marginal table.sGs

R
s
S

❅
❅

According to the collapsibility condition, if the (RS,SG) log-linear model
fit, then the partial S-G odds ratio equals the marginal odds ratio; that is,

θSG(i) = θSG
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Collapsibility for Multiway Tables

from Agresti

Suppose that variables in a model for a multiway table partition
into three exclusive subsets, A, B, and C, such that B separates
A and C; thus, the model does not contain parameters linking
variables from A with variables from C. When one collapses the
table over the variables in C, model parameters relating variables
in A and model parameters relating variables in A with variables
in B are unchanged.

Graphically, each path between variables in set A and variables in set C
involve at least 1 variable in set B. . . .
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Collapsibility for Multiway Tables

Graphically, each path between variables in set A and variables in set C
involve at least 1 variable in set B.

set A
Us
V
s✑✑

✑
✑
✑✑

set B
Ws
X
s

set C
Ys
Z
s
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Example of Collapsibility & Multiway Tables

Ts
Us
V
s

Xs
Ys
Z
s✟✟✟✟

❍❍❍❍

❍❍❍❍

✟✟✟✟

✬
✫

✩
✪Set A

✎✍ ☞✌
Set B

✗

✖

✔

✕
Set C

A 2nd Possibility:

Ts
Us
V
s

Xs
Ys
Z
s✟✟✟✟

❍❍❍❍

❍❍❍❍

✟✟✟✟✎✍ ☞✌Set A

★
✧

✥
✦

Set B
✗

✖

✔

✕
Set C

And others?
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Example 2 of Collapsibility & Multiway Tables

Ts
Us
V
s

Xs
Ys
Z
s✟✟✟✟

❍❍❍❍

❍❍❍❍✘✘✘✘✘✘✘✘✗
✖
✔
✕

Set A

✬

✫

✩

✪
Set B

✗

✖

✔

✕
Set C

A 2nd Possibility:

Ts
Us
V
s

Xs
Ys
Z
s✟✟✟✟

❍❍❍❍

❍❍❍❍✘✘✘✘✘✘✘✘
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Using Graphs to Guide Modeling

Example: Data from a concurrent-task detection experiment.
(Olzak, 1981; Olzak & Wickens, 1983; Wickens, 1989; Anderson, 2002;
Kroonenberg & Anderson, 2006).

There are two signals (i.e., vertically oriented sin ways):

H — A high frequency one.

L — A low frequency one.

On each trial for each potential signal, subjects rated on a 1 to 6 scale
whether a signal was present or not where 1 indicates they were sure that
no signal was presented and 6 indicates that they were sure that a signal
was presented. Each subject performed 2,000 trials where there were 500
consisting of 2× 2 combinations of H and L signals being present or
absent.
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Using Graphs to Guide Modeling

There are 2 response variables:

X for the rating of the H signal
Y for the rating of the L signal.

. . . and there were 2 factors (conditions) were L and H present and/or
absent
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The Data

High Frequency Signal
Low Absent Present
Freq Y X = 1 2 3 4 5 6 1 2 3 4 5 6

1 69 6 1 1 0 0 10 5 2 11 16 28
2 34 20 10 3 1 0 8 5 11 43 27 38

Absent 3 43 24 13 9 1 0 9 6 7 28 32 45
4 78 40 20 6 0 1 8 6 14 19 23 22
5 32 38 17 5 4 0 4 5 7 6 18 18
6 5 14 3 2 0 0 0 1 2 3 5 8
1 4 1 0 0 0 0 5 0 1 4 4 9
2 5 3 2 1 0 0 0 1 3 6 9 27

Present 3 8 6 3 1 0 0 2 3 2 11 27 20
4 36 25 18 3 1 0 9 12 11 10 23 31
5 83 69 26 6 1 0 16 7 5 19 23 40
6 127 50 12 7 2 0 21 14 13 20 21 61

With four variables, there are many possible models to fit. However, we
don’t need to consider all models that could be fit to the data.
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Assumptions?

Concerned about the assumptions?

Independence of observations?

Homogeneity?
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Random Responding

Since H and L were fixed by the experimenter (i.e., “fixed by design”), all
models should include terms λHL for the HL association. The simplest
model would be that a subject responds randomly

X
s

Y
s

H
s

L
s

The log-linear model: (HL,X, Y ).

G2 = 2265.57, df = 130, p < .01
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Detectable Signals

The subject can detect the signals & detecting one does not influence
detection of the other (i.e., subject does what the experimenter asked).

X
s

Y
s

H
s

L
s

Log-linear model: (HL,XH,Y L)
This is a “base” model to which we can add more complicated forms of
associations.
G2 = 375.72, df = 120, p < .01
If one signal or the other was not detectable, then we might have another
base model (e.g., (HL,XH,Y ) or (HL,LY,X)).
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Association to the unrelated signal

In this model, responses to one signal are influenced by whether both
signals are present and/or absent (i.e., the appropriate and inappropriate
signal).

X
s

Y
s

H
s

L
s

❅
❅
❅❅

�
�

��

The log-linear model (HLX,HLY )
G2 = 221.43, df = 100, p < .01
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Association to the unrelated signal

X and Y are conditionally independent given H and L.

A more restricted alternative model that also has this graphical
representation, (HL,HX,HY,LX,LY ).

Since we’re only considering models that “make sense” (i.e. that are
interpretable), we wouldn’t include a model such as

X
r

Y
r

H
r

L
r

❅
❅
❅

�
�

�
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Response-response association

We add to the base model (detectable signals) the possibility that a
response regarding one signal is related to response to the other signal.

X
s

Y
s

H
s

L
s

The log-linear model: (HL,HX,LY,XY ).

G2 = 159.27, df = 95, p < .01
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All pairwise associations.

The log-linear model (HL,HX,HY,LX,LY,XY ).

G2 = 113.82, df = 85, p = .02

It’s graphical representation is
X
s

Y
s

H
s

L
s

❅
❅
❅❅

�
�

��

This is also the representation of many other log-linear models with
dependencies, including model with 4-way interaction (i.e. saturated
model).

This is the most complex graph, but there are interesting log-linear models
that have this representation.
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Another Model

We can add three–factor terms to the all pairwise association model.
Some of these all have reasonable interpretations.

For example, consider the model that adds λHLY . The λHLY terms imply
that delectability of the L signal (measured by Y ) is affected by the
presence of the H signal.

It’s graphical representation is
X
s

Y
s

H
s

L
s

�
�

��

Fit of this model G2 = 98.06, df = 80, p = .08
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QQ Plot for (HLY,HY,LY,XY)
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Eg: 4-way Table with Time Ordering

Using a suggested ordering of the variables in terms of time and causal
hypotheses and show how to “decompose” a model into smaller pieces.

Example from Agresti, 1990; The variables:

G for gender.

PMS for premarital sex.

EMS for extra martial sex.

M for marital status (divorced, still married).

We’ll depart somewhat from the graphical models that we’ve discussed so
far and talk about directed relationships.
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Eg: 4-way Table with Time Ordering

The point in time at which values of variables were determined:

G PMS EMS M

Any variable to the right of others could be a response & those left of it
explanatory.
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Breaking down the analysis

We could analyze these data in three stages:

Stage Response Explanatory

(1) PMS Gender
(2) EMS Gender, PMS
(3) M Gender, PMS, EMS

To further guide the modeling consider the following figure, which might
have been hypothesized as the existing causal structure for the variables.

G P

E

M✲ ✲✑
✑✑✸

◗
◗◗s
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Stage 1

PMS is the response & G explanatory.

G P✲

G2 [(G,P )] = 75.26, df = 1, and p < .0001.

Sample (marginal) odds ratio θ̂GP = .27 (or 1/.27 = 3.70).
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Stage 2

Stage 2: EMS is the response and G & PMS are possible explanatory
variables.

Model df G2 p X2 p

(GP,E) 3 48.92 < .001 56.77 < .001
(GP,PE) 2 2.91 .23 2.95 .23
(GP,GE,PE) 1 .00a .98 .00a .98

a. Value = .0008.

Loglinear model (GP,PE) fits pretty well.
The estimated P -E odds ratio θ̂EP = 3.99.

The marginal odds ratio is also equal to 3.99, and the reason why can be
seen by looking at the figure for the model that fit:

E
✑✑✸
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Last Stage

Stage 3: M is the response, G, PMS and EMS are explanatory variables.

Model df G2 p
(EGP,EM,PM) 5 18.16 < .01
(EGP,EMP ) 4 5.25 .26
(EGP,EMP,GM) 3 .70 .88

(EGP,EM,PM) corresponds to the original figure.

(EGP,EMP ) adds an interaction between EMS and PMS with respect to
M, marital status.

(EGP,EMP,GM) adds a main effect for Gender with respect to predicting
M.

(EGP,EMP ) and (EGP,EMP,GM) are more complex than implied by
original figure.
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Modeling Ordinal Relationships in 2–Way Tables

Loglinear models for contingency tables treat all variables as nominal
variables.

If there is an ordering of the categories of the variables, this is not
taken into account

Could rearrange the rows and/or columns of a table and we would get
the same fitted odds ratios for the data as we would given the ordinal
ordering of the rows and/or columns.
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In between independence & saturated models

High School and Beyond: Consider Program type (Vocational/technical,
general and academic) and SES (low, middle, high).

Program Type
SES Vo/Tech General Academic

Low 45 50 44
Middle 82 70 147
High 20 25 117

For the SES × Program type data, if the two variables are independent,
then we have

log(µij) = λ+ λS
i + λP

j

G2 = 53.72, df = 4, p < .001, which leaves us with the saturated model.
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In between independence & saturated models

log(µij) = λ+ λS
i + λP

j

log(µij) = λ+ λS
i + λP

j + λSP
ij

We can use ordering of SES levels and assign scores to them and we’ll
guess at the ordering of the program types, which we can use our model.

Given scores for the rows {u1 ≤ u2 . . . ≤ uI} and scores for the columns
{v1 ≤ v2 ≤ . . . ≤ vJ}, then we can model the dependency between the
variables:

log(µij) = λ+ λS
i + λP

j + βuivj

This only requires 1 extra parameter (i.e., model df = 3).
This model is know as the “linear by linear association model”.
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Log Linear by Linear Association Model

log(µij) = λ+ λS
i + λP

j + βuivj

It’s called the “linear by linear association model,” because. . .

For each row i, the association is a linear function of the columns,

λSP
ij = (βui)vj

For each column j, the association is a linear function of the rows.

λSP
ij = (βvj)ui
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Log Linear by Linear Association Model (continued)

log(µij) = λ+ λS
i + λP

j + βuivj

Only has 1 more parameter than the independence model (i.e., β), so
it is “in between” independence and the saturated models.

If β > 0, then X and Y are positively associated (i.e., X tends to go
up as Y goes up).

If β < 0, the X and Y are negatively associated.
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Linear by Linear Association Model (continued)

The odds ratio for any 2× 2 sub-table is a direct function of the row
and column scores and β.

log

(

µijµi′j′

µi′jµij′

)

= log(µij) + log(µi′j′)− log(µi′j)− log(µij′)

= β(uivj + ui′vj′ − ui′vj − uivj′)

= β(ui − ui′)(vj − vj′)

The strongest associations occur in the extreme corners of the table
(largest differences between scores).

The smallest associations occur for rows and columns that have
scores that are more nearly equal.
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Example of linear by linear model

For the high school data example, it seems reasonable to assign equally
spaced scores for the levels of SES:

u1 = 1, u2 = 2, u3 = 3

For the program types, it seems reasonable to order them as:

Vo/Tech ≤ General ≤ Academic

Guess that Vo/Tech and General should be closer together than are
General and Academic; therefore, let’s try

v1 = 1, v2 = 2 v3 = 4
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Example of linear by linear model

v1 = 1, v2 = 2 v3 = 4

Model df G2 p ∆df ∆G2 p

Independence 4 53.715 < .001 — — —
L by L 3 5.980 .10 1 47.74 < .001
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Estimated Parameters & Odds Ratios

β̂ = .32 and exp(.32) = 1.38,

The odds ratio for a unit change in row and column scores equals 1.38
(e.g., odds ratio for low–middle SES and vo/tech–academic subtable).

The extreme corners of our table, which correspond to the low & high SES
levels and program types vo/tech & academic:

θ̂ = exp [.3214(3 − 1)(4 − 1)] = exp(.3214(6)) = 6.88

The odds of attending an academic versus a vo/tech program if you’re
high SES is 6.88 times the odds if you’re low SES.
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SAS/GENMOD and Fitting the L by L model

DATA hsb;
input ses $ hsp $ count u v ;
datalines;
low general 50 1 2
low academic 44 1 4
low votech 45 1 1
mid general 70 2 2
mid academic 147 2 4
mid votech 82 2 1
hi general 25 3 2
hi academic 117 3 4
hi votech 20 3 1

PROC GENMOD data=hsb;
class ses hsp;
model count = ses hsp u*v / link=log dist=poi;
title ’Log Linear x Linear Association Model’;
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SAS/GENMOD and Fitting the L by L model

Linear x Linear Association Model
The GENMOD Procedure
Model Information
Data Set WORK.HSB
Distribution Poisson
Link Function Log
Dependent Variable count

Number of Observations Read 9
Number of Observations Used 9
Class Level Information
Class Levels Values
ses 3 hi low mid
hsp 3 academic general votech

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 3 5.9798 1.9933
Scaled Deviance 3 5.9798 1.9933
Pearson Chi-Square 3 5.6845 1.8948
Scaled Pearson X2 3 5.6845 1.8948
Log Likelihood 2020.3156

Algorithm converged.
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SAS and Fitting the L by L model

Linear x Linear Association Model
The GENMOD Procedure
Analysis Of Parameter Estimates

Wald95%
Standard Confidence Chi- Pr >

Parameter DF Estimate Error Limits Square ChiSq

Intercept 1 3.04 0.21 2.63 3.45 216.20 < .0001
ses hi 1 -1.59 0.19 -1.95 -1.22 72.06 < .0001
ses low 1 0.04 0.15 -0.26 0.34 0.07 .7903
ses mid 0 0.00 0.00 0.00 0.00 . .
hsp academic 1 -0.59 0.23 -1.04 -0.14 6.72 .0095
hsp general 1 0.58 0.14 0.30 0.86 16.44 < .0001
hsp votech 0 0.00 0.00 0.00 0.00 . .
u*v 1 0.32 0.05 0.23 0.42 43.71 < .0001
Scale 0 1.00 0.00 1.00 1.00

NOTE: The scale parameter was held fixed.
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R and Fitting the L by L model

> hsb
ses hsp count u v row col

1 low general 50 1 1 1 1
2 low academic 44 1 4 1 3
3 low votech 45 1 2 1 2
4 mid general 70 2 1 2 1
5 mid academic 147 2 4 2 3
6 mid votech 82 2 2 2 2
7 hi general 25 3 1 3 1
8 hi academic 117 3 4 3 3
9 hi votech 20 3 2 3 2

summary( lin.by.lin ← glm(count ∼ ses + hsp + u*v,

data=hsb, family=poisson) )

Note: ses & hsp are factors and u and v are numeric.
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R and Fitting the L by L model

Coefficients: (2 not defined because of singularities) ← can ignore
Estimate Std. Error z value Pr(> |z|)

(Intercept) 0.86477 0.55481 1.559 0.119075
seslow 1.62718 0.29396 5.535 3.11e − 08 ***
sesmid 1.58699 0.18695 8.489 < 2e− 16 ***
hspgeneral 1.17067 0.30386 3.853 0.000117 ***
hspvotech 0.59214 0.22834 2.593 0.009508 **
u NA NA NA NA
v NA NA NA NA
u:v 0.32143 0.04862 6.612 3.80e − 11 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 206.9648 on 8 degrees of freedom
Residual deviance: 5.9798 on 3 degrees of freedom
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R and Fitting the L by L model

> (a ← anova(independence,lin.by.lin) )
Analysis of Deviance Table
Model 1: count ∼ ses + hsp
Model 2: count ∼ ses + hsp + u * v

Resid. Df Resid. Dev Df Deviance
1 4 53.715
2 3 5.980 1 47.735

> dim(a)

2 4
> 1-pchisq(a[2,4],a[2,3])

4.878986e-12
> exp(lin.by.lin$coefficients[8])
u:v
1.379101
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Choice of Scores

Sets of scores with the same spacing between them will lead to the
same goodness-of-fit statistics, fitted counts, odds ratios, and β̂. For
HSB data, the following set of scores for the columns (hsp) would yield
that same result: v1 = 0, v2 = 1, v3 = 3.
Two sets of scores with the same relative spacing will lead to the same
goodness-of-fit statistics, fitted counts, and odds ratios, but different
estimates of β. e.g.,

v1 = 2, v2 = 4 v3 = 8

With these column (HSP) scores, β̂ = .1607.

Odds ratio for low & middle (or middle & high) and vo/tech & general

θ̂ = exp[.1607(2− 1)(4− 2)] = exp[.1607(2)] = exp[.3214] = 1.38

Odds ratio for low & high SES and program types vo/tech & academic:
θ̂ = exp[.1607(3− 1)(8− 2)] = exp[.1607(12)] = 6.88
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Uniform Association Model

When scores are consecutive integers (or equally spaced scores) are used,
e.g.,

u1 = 1, u2 = 2, . . . , uI = I

v1 = 1, v2 = 2, . . . , vJ = J

This special case of L by L model is the “Uniform Association Model.”

The uniform association model for the HSB example:

Model df G2 p

Independence 4 53.715 < .01
L by L 3 5.980 .10
Uniform Assoc 3 11.74 < .01

This model is called the Uniform Association Model, because the odds
ratios for any two adjacent rows and any two adjacent columns equals

θ = exp
[

β(ui − u(i−1))(vj − v(j−1))
]

= exp(β)

The “Local Odds Ratio” equals exp(β) and is the same for adjacent rows
and columns.
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GSS example of Uniform Association Model

Recall. . .

Item 1: A working mother can establish just as warm and secure of a
relationship with her children as a mother who does not work.

Item 2: Working women should have paid maternity leave.

Item 2
strongly strongly

agree agree neither disagree disagree
Item 1 1 2 3 4 5
strongly agree 1 97 96 22 17 2
agree 2 102 199 48 38 5
disagree 3 42 102 25 36 7
strongly disagree 4 9 18 7 10 2
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GSS Results

Model/Test df G2 p Estimates

Independence 12 44.96 < .001
M2 1 36.261 < .001 r = .20

Uniform Assoc 11 8.67 .65 β̂ = .24, ASE = .0412

RC(1) Assoc 6 4.77 .57 φ̂ = 1.63

Ho : β = 0 vs Ha : β 6= 0,
L.R. test: G2 = (44.96 − 8.67) = 36.29, df = 1, p < .01

The estimated local odds ratio equals e.24 = 1.28.

For the extreme corners of the table, the estimated odds ratio equals
e.24(3)(4) = 18.5

Unlike the tests of ordinal association that are based on a correlation,
these models provide us with estimated odds ratios for the table, as well as
permit us to check residuals, etc.
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RC(M) Association Model

Random: Poisson
Link: log
Predictor: multiplicative interaction

log(µij) = λ+ λR
i + λC

j +

M
∑

m=1

φmνRimνCjm

where

νRi and νCj are estimated row and column scale values on the mth
dimension
φm is the association parameter

ID constraints (typical): Location

∑

i

λR
i =

∑

j

λC
j +

∑

i

νRim =
∑

j

νCjm = 0

Scaling
∑

i

(νRim)2 =
∑

j

(νCjm)2 = 1

Orthogonality (for m > 1)

∑

i

νRimνRim′ =
∑

j

νCjmνCjm′ = 0

C.J. Anderson (Illinois) Model Building for Log-linear and Logit Models 60.1/ 141



Overivew Graphical Models Collapsibility Modeling Ordinal Ordinal vs Independence

GSS Results: RC(1) scale values
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Back to HSB

For the HSB data, using equally spaced scores we find that

M2 = 40.87, df = 1, p < .001, and r = .26

However, when we fit the linear by linear association model with equal
scores it did not fit the data (this is shown in the residuals, as well).

Model df G2 p

Independence 4 53.715 < .01
L by L (unequal spacing) 3 5.980 .10
Uniform Assoc (equal spacing) 3 11.74 < .01
RC(1) Assoc (estimated) 1 1.74 .19

First dimension from correspondence analysis accounts for 96.84% of
Pearson’s X2 from independence.
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R: Fitting RC(M) Association Model

There are 2 packages, gnm (Generalized non-linear models) and logmult

where the former is more general and the latter is a wrapper function for
gnm specially designed for RC(M) association models.
library(logmult)

rc1 <- rc(hsb.tab, nd = 1, weighting=c("none"), rowsup =

NULL, colsup = NULL, se = c("jackknife"), nreplicates =

100, family = poisson )

plot(rc1, main="RC(1) Association Model") library(gnm)

rc1.gnm <-gnm(counts ses + hsp + Mult(ses,hsp), data=hsb,

family=poisson, verbose=TRUE)

I use a variety of different programs do this. . .
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Other Options for Fitting LMA Models

LEM (Vermunt) can fit log-linear, latent class, and LMA models
(https://jeroenvermunt.nl/#Software). This was the precursor to
LatentGold software.
LatentGold, although I have never used it for LMA models.
Various SAS macros for RC association models.
LMA models: PROC NLP or NLMIXED where input model and
likelihood. This will fit a wider array of models. The hard part is
setting up data and typing out model, and it is limited in terms of size
of problems (i.e., size of cross-classification).
Log-linear by linear for larger problems using pseudo-likelihood
estimation is in the R packages plRasch (Anderson, Li & Vermunt,
2007) or more general pleLMA (Anderson, 2022).
A SAS macro that uses pseudo-likelihood estimation (Paek &
Anderson, 2016). This uses PROC MDC (“multinomial discrete
choice”), which is in the econometrics package.
“Network Psychometrics” Group at Amsterdam:
http://psychonetrics.org/
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Demonstration of the pleLMA Package

This package fits extensions of RC association models to low (K > 2) or
high dimensional tables. It it as input sections of an adjacency matrix from
a graphical model and iteratively fits multinomial logistic regression
models (i.e., discrete choice models).

The models arise from many different underlying processes, including IRT
models.

The use of pleLMA (published on CRAN) will be demonstrated in class. A
forthcoming paper on association models will be (temporarily) posted on
course web-site. The package comes with an extensive vignette describing
the package and how to use it.
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Correspondence Analysis

It is a data analytic technique and it not a statistical model (i.e., no
significance test).

Provides another way to represent association between 2-variables.

An optimal scaling procedure that decomposes Pearson’s X2 from
independence.

The scale values or scores from the 1st dimension yield the largest
possible correlation between rows and columns. For HSB data this
equals

r =
√

χ2/n =
√

52.06/600 = .29

.

Applied to 2-way tables (there are generalizations for higher-way).

Gives another way to visualize associations.

Interpretation. . . let’s look at graph
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Correspondence Analysis (continued)

Correspondence Analysis

Dimension 1 (96.8%)
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Correspondence Analysis (continued)
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Ordinal Tests of Independence

CMH test was one way to test of ordinal association (or independence),
but now we have a model based method.
Using the linear by linear association model

log(µij) = λ+ λX
i + λY

j + βuivj

The likelihood ratio test and the Wald test of the hypothesis

Ho : β = 0

is the same as testing

Ho : independence

Using the likelihood ratio test,

G2(I|L× L) = G2(I)−G2(L× L)
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Ordinal Tests of Independence

For the HSB data:

G2(I|L× L) = 53.715 − 5.98 = 47.73

with df = 4− 3 = 1, and p < .001.

The Wald test:
(

β̂

ASE

)2

=

(

.3199

.0485

)2

= 43.55

The CMH test is the efficient score test for this same hypothesis

M2 = 40.87, df = 1, p < .001
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More Association Models for HSB

Model df G2 p
Independence 4 53.715 < .01
Uniform Assoc (equal spacing) 3 11.74 < .01
L by L (unequal spacing) 3 5.980 .10
Nominal HSP × Ordinal SES (equal spaced SES) 2 2.30 .32
RC association (scores estimated) 1 1.74 .19

The estimated parameters for the SES × HSP association in the nominal ×
ordinal model

β̂votech = .000, β̂general = −.005 β̂academic = .864

RC association model estimates the scores for both SES and HSP, as well
as β (the “association parameter”).

HSP est. score SES est. score
VoTech -.423 Low -.669
General -.393 Middle -.071
Academic .816 High .740

and β̂ = 1.000
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Comments on models for ordinal variables

This approach is not restricted to models for 2–way tables and
log-linear models. You add use scores in log-linear and/or logit model
for higher–way tables.
There are more general models where the scores are estimated from the
data. For 2–way tables, this includes Goodman’s “row effects” model
(R), “column effects” model (C), “row + column” effects model
(R+ C), and the row–column model RC. There are generalizations of
these models to multiple dimensions and higher–way tables.
There are also models for ordinal response variables that take into
account the ordering of the categories.
Other ordinal models (Vermunt, J.K. (2001). Sociological
Methodology).
Log multiplicative models with latent variable interpretations (Anderson
& Vermunt, 2000; Anderson, 2002; Anderson & Yu, 2007; Anderson,
Li & Vermunt, 2007; Anderson, Verkuilen & Peyton, 2012; Anderson
(2013); papers by group in Amsterdam and by group at Columbia).
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Wickens & Olzak revisited

A good model for Wickens & Olzak data is (HLY,HY,LY,XY ),

log(µijkl) = λ+ λH
i + λL

j + λHL
ij +λX

k + λY + λXY
kl + λHX

ik + λLY
jl + λHLY

ijl

Let uk = 1, . . . , 6 and vℓ = 1, . . . , 6 be scores for the high and low
responses, respectively. We can use these instead of nominal responses:

log(µijkl) = λ+λH
i +λL

j +λHL
ij +λX

k +λY +λXY
kl +λH

i uk+λL
j vℓ+λHL

ij vℓ

This model doesn’t fit particularly well (G2 = 259.1267, df = 100,
p < .01), but one with estimated scores does.
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Eg. of a Latent Variable Model

High rating

Low rating

Joint signal

✖✕
✗✔
Θ1

✖✕
✗✔
Θ2

ν
(HL)
1(ij)

ν
(HL)
2(ij)

σ2
1

σ2
2

νk

νl

λHL
kl

log(µijkl) = λ+ λHL
ij + λX

k + λY + λXY
kl + σ2

1ν
HL
1(ij)νk + σ2

2ν
HL
2(ij)νl

G2 = 138.35, df = 98, p = .01, D = .082.

But there were 2 subjects and this graph describes both. For the other
subject (“subject A”), G2 = 111.12, df = 97, p = .15, D = .086).
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Estimated Scores
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Parameter Estimates— the low signal

For both subjects
Parameter Standard

Variable Level estimate error

rating 1 ν̂rating1 = −.42 (.01)

rating 2 ν̂rating2 = −.38 (.01)

rating 3 ν̂rating3 = −.24 (.01)

rating 4 ν̂rating4 = .00 (.02)

rating 5 ν̂rating5 = .31 (.02)

rating 6 ν̂rating6 = .73 (.02)

signal high absent/low absent ν̂
(HL)
2(11) = −.49 (.00)

signal high present/low absent ν̂
(HL)
2(21) = −.49 (.00)

signal high absent/low present ν̂
(HL)
2(12) = .61 (.02)

signal high present/low present ν̂
(HL

2(22) = .37 (.03)

Θ2 σ̂2
2 = 3.30 (.12)
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Parameter Estimates— the high signal

The ν’s for ratings are the same as previous slide.

Subject A Subject B

high absent/low absent ν̂
(HL)
1(11)A = −.58 (.00) ν̂

(HL)
1(11)B = −.50 (n.a.)

high present/low absent ν̂
(HL)
1(21)A = .41 (.00) ν̂

(HL)
1(21)B = .50 (n.a.)

high absent/low present ν̂
(HL)
1(12)A = −.39 (.00) ν̂

(HL)
1(12)B = −.50 (n.a.)

high present/low present ν̂
(HL)
1(22)A = .58 (.00) ν̂

(HL)
1(22)B = .50 (n.a.)

Θ1 σ̂2
1A = 2.69 (.18) σ̂2

1B = 7.11 (.49)
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Tests of Conditional Independence

General terms of testing whether row (X) and column (Y ) classifications
are independent conditioning on levels of a third variable (Z).

There are 3 kinds of tests:

1 Likelihood ratio tests (“LR” for short).
1 Comparing conditional independence model to homogeneous

association model.
2 Comparing conditional independence model to saturated model.

2 Wald tests.
3 Efficient score tests, i.e. Generalized CMH.

The LR and Wald tests require the estimation of (model) parameters,
while the Efficient score tests do not.
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Nature of Variables: Ordinal &/or Nominal

We have 3 cases:

1 Nominal-Nominal

2 Ordinal-Ordinal

3 Nominal-Ordinal

So the possibilities are:

Type of Test
Variable Likelihood (Generalized)

Row Column Ratio Wald CMH

Nominal Nominal
Nominal Ordinal
Ordinal Ordinal

C.J. Anderson (Illinois) Model Building for Log-linear and Logit Models 79.1/ 141



Overivew Graphical Models Collapsibility Modeling Ordinal Ordinal vs Independence

Some Data that We’ll Use

For illustration, we’ll use some High School & Beyond data, i.e., the
cross-classification of gender (G),
SES (S) and high school program type (P).

Females High School Program
SES VoTech General Academic Total
low 15 19 16 50
middle 44 30 70 144
high 12 11 56 79
Total 71 60 142 273

Males High School Program
SES VoTech General Academic Total
low 30 31 28 89
middle 38 40 77 155
high 8 14 61 83
Total 76 85 166 327
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Model Based Tests of Conditional Independence

The likelihood ratio test. We compare the fit of the conditional
independence model and comparing it to the homogeneous association
model.

For example to test whether X and Y are conditionally independent given
Z, i.e.,

HO : all λXY
ij = 0

The likelihood ratio test statistic is

G2 [(XZ,Y Z)|(XY,XZ, Y Z)] = G2(XZ,Y Z)−G2(XY,XZ, Y Z)

with df = df(XZ,Y Z)− df(XY,XZ, Y Z).
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The likelihood ratio test (example)

Example: G= Gender , S= SES, and P= Program type. Testing whether
SES and program type are independent given gender,

HO : all λSP
ij = 0

Goodness-of-fit Test Likelihood Ratio Test
Model df G2 p ∆df ∆G2 p

(GS,GP, SP ) 4 1.970 .74 — — —
(GS,GP ) 8 55.519 < .0001 4 53.548 < .001
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Notes Regarding Likelihood Ratio Test

This test assumes that (XY,XZ, Y Z) holds.
This single test is preferable to conducting (I − 1)(J − 1) Wald tests,
one for each of the non-redundant λXY

ij ’s. For our example, the result
is pretty unambiguous; that is, from SAS

Parameter Estimate ASE Wald p

λSP
lv 1.8133 .3233 31.450 < .0001

λSP
lg 1.6600 .3033 29.952 < .0001

λSP
mv 1.1848 .2786 18.079 < .0001

λSP
mg .8004 .2639 9.198 .0024

For binary Y , this is the same as performing the likelihood ratio test
of whether HO : all βX

i = 0 in the logit model

logit(πik) = α+ βX
i + βZ

k

which corresponds to the (XY,XZ, Y Z) log-linear model.
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Notes Regarding Likelihood Ratio Test

For 2× 2×K tables, this likelihood ratio test of conditional independence
has the same purpose as the Cochran–Mantel–Haenszel (CMH) test. For
the CMH test,

It works the best when the partial odds ratios are similar in each of
the partial tables.

It’s natural alternative (implicit) hypothesis is that of homogeneous
association.

CMH is the efficient score tests of HO : λXY
ij = 0 in the log-linear

model.
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Direct Goodness-of-Fit Test

We compare the fit of the conditional independence model to the saturated
model; that is,

G2 [(XZ,Y Z)|(XY Z)] = G2(XZ,Y Z)−G2(XY Z)

The null hypothesis for this test statistic is
HO : all λXY

ij = 0 and all λXY Z
ijk = 0

Example: G= Gender , S= SES, and P= Program type. Testing whether
SES and program type are independent given gender,

HO : all λSP
ij = 0 and all λGSP

ijk = 0

Goodness-of-fit Test Likelihood Ratio Test
Model df G2 p ∆df ∆G2 p

(GS,GP, SP ) 4 1.970 .74 — — —
(GS,GP ) 8 55.519 < .0001 4 53.548 < .001
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Notes on Direct Goodness-of-Fit Test

A direct goodness-of-fit test does not assume that (XY,XZ, Y Z) holds,
while using G2 [(XZ,Y Z)|(XY,XZ, Y Z)] does assume that the model of
homogeneous association holds.

Disadvantages of the goodness-of-fit test as a test of conditional
independence

1 It has lower power.

2 It has more df than the Wald test, the CMH, and the LR test
(i.e.,G2 [(XZ,Y Z)|(XY,XZ, Y Z)]).
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Ordinal Conditional Association

If the categories of one or both variables are ordered, then there are more
powerful ways of testing for conditional independence.

With respect to models, we can use a generalized linear by linear model,
more specifically a “homogeneous linear by linear association” model.

log(µijk) = λ+ λX
i + λY

j + λZ
k + βuivj + λXZ

ik + λY Z
jk

where ui are scores for the levels of variable X, and vj are scores for the
levels of variable Y .

Notes:

The model of conditional independence is a special case of this
model; that is, β = 0

This model is a special case of the homogeneous association model.
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Ordinal Conditional Association

Example: Using as equally spaced scores for SES (i.e., u1 = 1, u2 = 2, and
u3 = 3), and unequally spaced scores for program type (i.e., v1 = 1, v2 = 2,
and v3 = 4), we fit the model

log(µijk) = λ+ λS
i + λP

j + λG
k + βuivj + λSG

ik + λPG
jk

Goodness-of-fit Test Likelihood Ratio Test
Model df G2 p ∆df ∆G2 p

(GS,GP, SP ) 4 1.970 .74 — — —
(GS,GP, SP )–L×L 7 7.476 .38 3 5.505 .138
(GS,GP ) 8 55.519 < .0001 1 48.043 < .001

From before. . .

Goodness-of-fit Test Likelihood Ratio Test
Model df G2 p ∆df ∆G2 p

(GS,GP, SP ) 4 1.970 .74 — — —
(GS,GP ) 8 55.519 < 0001 4 53.548 < 001C.J. Anderson (Illinois) Model Building for Log-linear and Logit Models 88.1/ 141
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Example Continued. . .

The null hypothesis for the likelihood ratio test statistic (in the last
row of top table) is HO : β = 0 with df = 1; whereas, in the lower
table, it is

HO : all λSP
ij = 0 with df = 4

Comparing G2/df for the two tests,

53.548/4 = 13.387 versus 48.043/1 = 48.043

Conclusion: If data exhibit linear by linear partial association, then
using scores gives you a stronger (more powerful) test of conditional
independence.

The Wald statistic for β equals 43.939, df = 1, and p < .0001. This
is comparable to the new likelihood ratio test statistic.
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Estimated Partial Odds Ratios

β̂ = .3234. The estimated partial odds ratio equals

θ̂SP (k) = exp
[

.3234(ui − ui′)(vj − vj′)
]

For example, the smallest partial odds ratio is for low and middle SES and
votech and general programs,

θ̂SP (k) = exp [.3234(2 − 1)(2− 1)] = exp(.3234) = 1.38

The largest partial odds ratio is for low and high SES and votech and
academic programs equals

θ̂SP (k) = exp [.3234(3 − 1)(4 − 1)] = exp(1.9404) = 6.96
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So far. . .

Type of Test
Variable Likelihood (Generalized)

Row Column Ratio Wald CMH

Nominal Nominal X X
Nominal Ordinal
Ordinal Ordinal X X

Next, the model based nominal–ordinal case.

For the nominal–ordinal case, we only put in scores for the categories of the
ordinal variable and estimate a β for each category of the nominal variable.
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Nominal–Ordinal Case

For example, if only have put in scores for SES, we fitting the model

log(µijk) = λ+ λS
i + λP

j + λG
k + βP

j ui + λSG
ik + λPG

jk

where ui are scores for SES (i.e., u1 = 1, u2 = 2, and u3 = 3), and βP
j are

estimated parameters.
Goodness-of-fit Test Likelihood Ratio Test

Model df G2 p ∆df ∆G2 p
(GS,GP, SP ) 4 1.970 .74 — — —
(GS,GP ) 8 55.519 < .0001 4 53.548 < .001
(GS,GP, SP )–L×L 7 7.476 .38 3 5.505 .14
(GS,GP ) 8 55.519 < .0001 1 48.043 < .001
(GS,GP, SP ) with ui 6 4.076 .62 2 2.106 .35
(GS,GP ) 8 55.519 < .0001 2 51.443 < .001

For the nominal–ordinal model, from SAS: β̂P
votech = −.8784, β̂P

gen = −.8614,

β̂P
academic = 0, and from R: β̂P

votech = −0,Pgeneral = 0.0170 & β̂P
academic = 0.87

=⇒ the “best” scores for VoTech and General programs are much closer together
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So we have now discussed,

Type of Test
Variable Likelihood (Generalized)

Row Column Ratio Wald CMH

Nominal Nominal X X
Nominal Ordinal X X
Ordinal Ordinal X X

To complete our table, we need to talk about efficient score tests for
testing conditional independence for each of the three cases.

The efficient score test of conditional independence of X and Y given Z
for an I × J ×K cross-classification is a generalization of the
Cochran-Mantel-Haenszel statistic, which we discussed as a way to test
conditional independence in 2× 2×K tables.

For each of three cases, the test statistic is a
Generalized CMH Statistic.C.J. Anderson (Illinois) Model Building for Log-linear and Logit Models 93.1/ 141
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Generalized Cochran-Mantel–Haenszel Tests

The generalized CMH statistic is appropriate when the partial
associations between X and Y are comparable for each level of Z
(the same is true for the LR test G2 [(XZ,Y Z)|(XY,XZ, Y Z)]).

Ordinal–Ordinal. The generalized CMH uses a generalized correlation
and tests for a linear trend in the X–Y partial association.

The null hypothesis is HO : ρXY (k) = 0, and the alternative is
HA : ρXY (k) 6= 0.
The statistic gets large

as the correlation increases.

as the sample size per (partial) table increases.

When HO is true, the test statistic has an approximate chi–square
distribution with df = 1.
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Nominal–Ordinal Generalized CMH

Suppose that X (row) is nominal and Y (column) is ordinal.

Responses on each row can be summarized by the row mean score.

The generalized CMH test statistic for conditional independence compares the I
row means and is designed to detect whether the means are difference across the
rows.

If HO : µYj
= µY is true (i.e., the row means are all equal) or equivalently

conditional independence between X and Y given Z, then the statistic is
approximately chi-squared distributed with df = (I − 1).

When the scores for Y ∼ N (µYj
, σ2), a 1–way ANOVA would be an appropriate

test; that is, the nominal–ordinal generalized CMH statistic is analogous to a
1–way ANOVA.

Using midranks are used as scores in the generalized CMH statistic is equivalent
to the Kruskal–Wallis (non-parametric) test for comparing mean ranks.
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Example of Nominal–Ordinal Generalized CMH

In SAS or R output, the Cochran–Mantel–Haenszel statistic labeled

“Row Mean Scores Differ”

corresponds to the test for conditional independence between nominal SES
and ordinal program type.

In our example, it make more sense to let program type be nominal, which
yields

Statistic Alternative Hypothesis df Value p

1 Nonzero correlation 1 46.546 < .001
2 Row Mean Scores Differ 2 49.800 < .001
3 General Association 4 51.639 < .001
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Example: Nominal–Ordinal Generalized CMH

We can compute the mean SES scores for each program type for each
gender, e.g.,

[1(15) + 2(44) + 3(12)] /(15 + 44 + 12) = 139/71 = 1.96

High SES
Gender School Low Middle High
Gender Program 1 2 3 Mean

Females VoTech 15 44 12 139/71 = 1.96
General 19 30 11 112/60 = 1.87
Academic 16 70 56 324/142 = 2.28

Males VoTech 30 38 8 130/76 = 1.71
General 31 40 14 153/85 = 1.80
Academic 28 77 61 365/166 = 2.20
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Nominal–Nominal Generalized CMH

CMH test statistic is a test of “general association”.

Designed to detect any pattern or type of association that is similar across tables.

Both X and Y are treated as nominal variables.

The CMH test of general association is the efficient score test of HO : all
λXY
ij = 0 in the (XY,XZ, Y Z) log-linear model.

If the null is true, then the statistic is approximately chi–squared distributed with
df = (I − 1)(J − 1).

High School & Beyond example (all CMH tests):
Statistic Alternative Hypothesis df Value p
1 Nonzero correlation 1 46.546 < .001
2 Row Mean Scores Differ 2 49.800 < .001
3 General Association 4 51.639 < .001
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Summary: Tests of Ordinal Association

Type of Test
Variable Likelihood (Generalized)

Row Column Ratio Wald CMH

Nominal Nominal X X X
Nominal Ordinal X X X
Ordinal Ordinal X X X

. . . and for the curious and sake of completeness. . .
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Summary: Tests of Ordinal Association

Models for SES × Gender × Program type:

Model df G2 p
(GS,GP,SP) 4 1.970 .741
(GS,GP) 8 55.519 < .0001
(GP,SP) 6 8.532 .202
(SG,SP)∗ 6 3.312 .769
(GP,S) 10 62.247 < .0001
(GS,P) 10 57.027 < .0001
(G,SP)∗ 8 10.040 .262
(G,SP)–L × L∗ 11 16.221 .133
(G,P,S) 12 63.754 < .0001

The simplest model that appears to fit the data:

log(µijk) = λ+ λS
i + λP

j + λG
k + βuivj
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Sparse Data

and Incomplete Tables Methodology

Types of empty cells (sampling and structural zeros).

Effects of sampling zeros and strategies for dealing with them.

Fitting models to tables with structural zeros.

A “Sparse” table is one where there are “many” cells with “small” counts.

How many is “many” and how small is “small” are relative. We need to consider
both

The sample size n (i.e., the total number of observations).

The size of the table N (i.e., how many cells there are).
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Types of Empty Cells

Sampling Zeros are ones where you just do not have an observation for the
cell; that is, nij = 0.

In principle if you increase your sample size n, you might get nij > 0.

P (getting an observation in a cell) > 0

Structural Zeros are cells that are theoretically impossible to observe a
value.

P (getting an observation in a cell) = 0

Tables with structural zeros are “structurally incomplete”.

This is different from a “partial classification” where an incomplete table
results from not being able to completely cross-classify all individuals.
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Partial classification

Data from a study conducted by the College of Pharmacy at the Univ of
Florida (Agresti, 1990) where elderly individuals were asked whether they
took tranquillizers. Some of the subjects were interviewed in 1979, some
were interviewed in 1985, and some were interviewed in both 1979 and
1985.

1985
not

1975 yes no sampled total

yes 175 190 230 595
no 139 1518 982 2639

not sampled 64 595 — 659

total 378 2303 1212 3893
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Structurally incomplete

Survey of teenagers regarding their health concerns (Fienberg):

Health Gender
Concern Male Female

Sex/Reproduction 6 16
Menstrual problems — 12
How healthy am I? 49 29
None 77 102

The probability of a male with menstrual problems = 0.
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Incomplete Data: What to do

It is important to recognize that a table is incomplete.

Determine why it is incomplete, because this has implications for how you
deal with the incompleteness.

If you have structural zeros or an incomplete classifications you should
not

1 Fill in cells with zeros

2 Collapse the tables until the structurally empty cells “disappear”.

3 Abandon the analysis.
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Effects of Sparse Data

Sampling Zeros

Problems that can be encountered when modeling sparse tables.

The effect of spareness on hypothesis testing.

Problems in modeling Sparse Tables.

There are two major ones:

Maximum likelihood estimates of loglinear/logit models may not exist.

If MLE estimates exist, they could be very biased.
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Non-existence of MLE estimates

Depending on what effects are included in a model and the pattern of the
sampling zeros determines whether non-zero and finite estimates of odds
ratios exist.

When nij > 0 for all cells, MLE estimates of parameters are finite.

When a table has a 0 marginal frequency and there is a term in the model
corresponding to that margin, MLE estimates of the parameter are infinite.
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Hypothetical example

(from Wickens, 1989):

Z = 1 Z = 2 Z = 3
Y = 1 2 3 4 1 2 3 4 1 2 3 4

X = 1 5 0 7 8 9 8 3 12 6 3 5 11
X = 2 10 0 6 7 8 3 0 9 0 2 8 11

The 1–way margins of this 3–way table:

X Y Z
1 2 1 2 3 4 1 2 3

77 64 38 16 29 58 43 52 46
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The 2–way margins

Y Z
1 2 3 4 1 2 3

X = 1 20 11 15 31 X = 1 20 32 25
X = 2 18 5 14 27 X = 2 23 20 21

Y
1 2 3 4

Z = 1 15 0 13 15
Z = 2 17 11 3 21
Z = 3 6 5 13 22

Since n+21 = 0, Y Z partial odds ratios involving this cell equal 0 or +∞.

The Y Z margin has a zero −→ no MLE estimate of λY Z
21 .

Suppose that n121 > 0, could you fit (XY, Y Z)? Could you fit the saturated
model (XY Z)
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Example from Tettegah & Anderson (2007)

Recognition of the victim.

Expression of empathic Concern for the victim.

Managing the situation with the victim.

Problem-Solving strategies.

N = 178 Mention
No Yes

Concern Concern
Solve Manage No Yes No Yes
No No 38 0 3 0

Yes 51 4 16 26
Yes No 0 0 0 0

Yes 2 1 21 17

What models can and cannot be fit to these data?
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Signs of a problem

The iterative algorithm that the computer used to compute MLE of a
model do not converge.

In SAS/GENMOD, in the log file you find the following
WARNING:

The negative of the Hessian is not positive definite. The

convergence is questionable.

The procedure is continuing but the validity of the model

fit is questionable. The specified model did not converge

Note: This is using the Wicken’s data.

R does not given any warning message.
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Signs of a problem

The estimated standard errors of parameters and fitted counts are really,
really large relative to the rest. They “blow up”.

For example, when the (X,Y Z) joint independence model is fit to the
hypothetical table using SAS/GENMOD,

λ̂Y Z
21 = −23.9833, ASE = 87, 417.4434

while all other ASE’s are less than .70.

µ̂121 = 7.15 × 10−11, log(µ̂121) = −23.3519, std err = 87, 417

µ̂221 = 5.94 × 10−11, log(µ̂121) = −23.3468, std err = 87, 417

R also have ridiculously large S.E.s, i.e., µ̂s for these cells ±29 and
se = 3, 966.26
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Sparseness & Odds Ratio Estimates

Sparseness can cause

The sampling distribution of fit statistics will be poorly approximated by the
chi–squared distribution.

Odds ratio estimates to be severely biased

Solution: add .5 to each cell in the table.

Adding .5 shrinks the estimated odds ratios that are ∞ to finite values and
increases estimates that are 0.

Qualifications: For unsaturated models, adding .5 will over smooth the data.

Remedies/Strategies/Comments. . .
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Sparseness & Odds Ratio Estimates

Remedies/Strategies/Comments:

An infinite estimate of a model parameter maybe OK, but an infinite
estimate of a true odds ratio is “unsatisfactory”.

When a model does not converge, try adding a tiny number (e.g., 1−8) to
all cells in the table.

Do a sensitivity analysis by adding different numbers of varying sizes to
the cells (e.g., 1−8, 1−5, .01, .1). Examine fit statistics and parameter
estimates to see if they change very much.
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Example: Hypothetical Data

and the (X,Y Z) loglinear model:

Number added G2 X2 Converge? ASE for λ̂Y Z
21

— 16.86 13.38 no 87,417.44
0.00000001 15.43 17.92 yes 7,071.07
0.000001 16.83 13.37 yes 223.61
0.0001 16.87 13.38 yes 22.37
0.1 18.86 13.78 yes 2.30

Alternative: Use an alternative estimation procedure (i.e., Bayesian).
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Log-Linear Models & Empathy Data

Independence

Vignette

Manage

Solve

Concern

Mention

G2 = 137.46

df = 26, p < .01

All 2-way interactions

Vignette

Manage

Solve

Concern

Mention

G2 = 13.69

df = 16, p = .62

Unrelated to Vignette

Vignette

Manage

Solve

Concern

Mention

G2 = 15.24

df = 29, p = .76
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Effect of Sparseness on X2 and G2

Guidelines:

When df > 1, it is “permissible” to have the µ̂ as small as 1 so long as less than
20% of the cells have µ̂ < 5.

Empathy data: 37.5% of cells equal 0.

The permissible size of µ̂ decreases as the size of the table N increases.

The chi–squared distribution of X2 and G2 can be poor for sparse tables with
both very small and very large µ̂’s (relative to n/N). Empathy data: sample
size/size of table = 178/16 = 11.. . . maybe OK.

No single rule covers all situations.

X2 tends to be valid with smaller n and sparser tables than G2.
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Effect of Sparseness on X2 and G2

Guidelines (continued):

G2 usually is poorly approximated by the chi-squared distribution when
n/N < 5. The p–values for G2 may be too large or too small (it depends
on n/N).

For fixed n and N , chi-squared approximations are better for smaller df
than for larger df .

G2 for model fit may not be well approximated by the chi-squared
distribution, but the distribution of difference between G2’s for two nested
models maybe.

Chi-squared comparison tests depend more on the size of marginal counts
than on cell sizes in the joint table.

So if margins have cells > 5, the chi-squared approximation of
G2(MO)−G2(M1) should be reasonable.
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Effect of Sparseness on X2 and G2

Guidelines (continued):

Empathy log-linear models:
G2(unrelated to vignette|All two-way) = 15.24 − 13.69 = 1.55, df = 13, p
large.

Exact tests and exact analyses for models.

An alternative test statistic: the Cressie-Read statistic
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Cressie-Read statistic

Cressie, N, & Read, T.R.C. (1984). Multinomial goodness-of-fit tests. Journal of
the Royal Statistical Society, 43, 440–464.

They proposed a family of statistics of the form

RC2 =
2

λ(λ + 1)

N
∑

i=1

ni

[

(

ni

µ̂i

)λ

− 1

]

where −∞ < λ <∞.

The value of λ defines a specific statistic (note: λ here is not a parameter of the
loglinear model).

For

λ = 1, RC2 = X2.

λ→ 0, RC2 = G2.

λ = 2/3 works pretty well for sparse data. The sampling distribution of RC2 is
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Modeling Incomplete Tables

While structural zeros (and partial cross-classifications) are not as common
as sampling zeros, there are a number of uses of the methodology for
structurally incomplete tables:

1 Dealing with anomolous cells.

2 Excluding “problem” sampling zeros from an analysis.

3 Check collapsibility across categories of a variable.

4 Quasi–independence.

5 Symmetry and quasi–symmetry.

6 Marginal homogeneity.

7 Bradley–Terry–Luce model for paired comparisons.

8 (Guttman) scaling of response patterns.

9 Estimate missing cells.

10 Estimation of population size.

11 Other.

We’ve discuss 1, 2, and 3 now, and later 4, 5 and 6. (For the others, check
Fienberg text and/or Wickens texts.)
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The Methodology

We remove the cell(s) from the model building and analysis by only fitting models
to cells with non-structural zeros.

We can arbitrarily fill in any number for a structural zero, generally we just put in
0.

To “remove” the (i, j) cell from the modeling, an indicator variable is created for
it,

I(i, j) = 1 if cell is the structural zero

= 0 for all other cells

When this indicator is included in a loglinear model as a (numerical) explanatory
variable, a single parameter is estimated for the structural zero, which used up 1
df , and the cell is fit perfectly.

Since structural zeros are fit perfectly, they have 0 weight in the fit statistics X2

and G2.
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Example: Teens and Health Concerns

The data:

Health Gender
Concern Male Female
Sex/Reproduction 6 16
Menstrual problems — 12
How healthy am I? 49 29
None 77 102

We can express the saturated log-linear model as

log(µij) =

{

0 for the (2,1) cell
λ+ λH

i + λG
j + λHG

ij for the rest

Or equivalently we define an indicator variable. . .
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Example: Teens and Health Concerns

I(2, 1) = 1 for the (2,1) cell

= 0 otherwise

A single equation for the saturated log-linear model is

log(µij) = λ+ λH
i + λG

j + λHG
ij + δ21I(2, 1)

The δ21 is a parameter that will equal whatever it needs to equal such that the
(2,1) cell is fit perfectly (i.e., the fitted value will be exactly equal to whatever
arbitrary constant you filled in for it).
For the independence model, we just delete the λHG

ij term from the model, but
we still include the indicator variable for the (2, 1) cell.
What happens to degrees of freedom?

df = (# of cells)− (# non-redundant parameters)

= (usual df for the model)− (# cells fit perfectly)
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Independence: Teens and Health Concerns

df = (I − 1)(J − 1)− 1

= (4− 1)(2− 1)− 1 = 2

G2 = 12.60, and X2 = 12.39, which provide evidence that health concerns
and gender are not independent.
When n21 is set equal to 0, the estimated parameters for the independence
model are

λ̂ = 4.5466

λ̂H
1 = -2.0963 λ̂G

1 = −1.1076

λ̂H
2 = -2.0671 λ̂G

1 = 0.0000

λ̂H
3 = -0.8307

λ̂H
4 = 0.0000 δ̂21 = −22.9986

For the (2, 1) cell,

µ̂21 = exp(4.5466 − 2.0671 − .1076 − 22.9986) ∼ 0
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Anomalous Cells

A model fits a table well, except for one or a few cells.

The methodology for incomplete tables can be used to show that except
for these cells, the model fits.

. . . Of course, you would then need to talk about the anomalous cells (e.g.,
speculate why they’re not being fit well).

Example (from Fienberg, original source Duncan, 1975): Mothers of
children under the age of 19 were asked whether boys, girls, or both should
be required to shovel snow off sidewalks. The responses were
cross–classified according to the year in which the question was asked
(1953, 1971) and the religion of the mother.
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Example Anomalous Cells

Since none of the mothers said just girls, there are only 2 responses (boys,
both girls and boys).

1953 1971
Religion Boys Both Boys Both

Protestant 104 42 165 142
Catholic 65 44 100 130
Jewish 4 3 5 6
Other 13 6 32 23

Gender (G) is the response/outcome variable and
Year (Y) and Religion (R) are explanatory:
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Example Anomalous Cells

Gender (G) is the response/outcome variable and
Year (Y) and Religion (R) are explanatory:

Model df G2 p X2 p

(RY,G) 7 31.67 < .001 31.06 < .001
(RY,GY) 6 11.25 .08 11.25 .08
(RY,GR) 4 21.49 < .001 21.12 < .001
(RY,GY,GR) 3 0.36 .95 .36 .95
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A closer look at models

The homogeneous association model fits well.

The (RY,GY) model fits much better than independence, but fits
significantly worse than (RY,GY,GR):

G2[(RY,GY )|(RY,GY,GR)] = 11.25 − .36 = 10.89

with df = 3 and p = .01. Let’s take a closer look at (RY,GY).

The Pearson residuals from the (RY,GY) log-linear model

1953 1971
Religion Boys Both Boys Both

Protestant .75 -1.05 .91 -.91
Catholic -.84 1.18 -1.42 1.42
Jewish -.29 .41 -.22 .22
Other .12 -.17 .85 -.85

The 3 largest residuals −→ mothers who are Catholic. The model under
predicts “both” and over predicts “boys”.
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Deal Anomalous Cells

Question: If we do not include Catholic mothers, would the model (RY,GY)
or the logit model with just a main effect of year fit the data?

Try the model that removes the 3 largest residuals (the 2nd row of the
table)

log(µijk) = λ+ λR
i + λY

j + λG
k + λRY

ij + λGY
jk

+δ212I(2, 1, 2) + δ221I(2, 2, 1) + δ222I(2, 2, 2)

where the indicator variables are defined as

I(2, j, k) = 1 if Catholic and j 6= 1 and k 6= 1

= 0 otherwise

Why do we only need 3 indicators to “remove” the row for Catholic
mothers?

This model has df = 4, G2 = 1.35, and X2 = 1.39. So the (RY,GY) model
fits well without the second row of the table.
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Logit Model Example

Data are from Farmer, Rotella, Anderson & Wardrop (1998)

Individuals are from a longitudinal study who had chosen a career in science.
They were cross-classified according to their gender and the primary Holland code
describing the type of career in science that they had chosen.
1in
Interest was in testing whether women and men differed, and if so describing the
differences. We’ll treat gender as a response variable

Holland Gender
Code Men Women Total
Realistic 13 1 14
Investigative 31 24 55
Artistic 2 2 4
Social 1 24 25
Enterprising 2 1 3
Conventional 3 9 12
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Farmer, Rotella, Anderson & Wardrop

The logit model corresponding to the (H,G) log-linear model,

logit(πw) = log(πwomen/πmen) = α

has df = 5, G2 = 42.12, and p < .001.

Based on previous research, it was expected that men would tend to choose jobs
with primary code realistic and women primary code being social, and this is what
was found in the residuals,

Adjusted residuals
Holland Code Independence
Realistic −3.76
Investigative −2.15
Artistic −.16
Social 4.78
Enterprizing −.73
Conventional 1.55

Two largest: Realistic and Social.
−→ fit these perfectly but allow independence in the rest of the table,. . .
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Farmer, Rotella, Anderson & Wardrop

Realistic and Social.
−→ fit these perfectly but allow independence in the rest of the table.
The logit model without Realistic and Social:

logit(πw) = α+ δRIR(i) + δSIS(i)

where

IR(i) =

{

1 if code is Realistic
0 otherwise

IS(i) =

{

1 if code is Social
0 otherwise

This model has df = 3, G2 = 4.32, p = .23, and fits pretty good.

Recall that the residuals from the independence models for realistic and
social are both quite large but opposite signs.
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Capturing the Association

Let’s define a new variable to capture the suspected association structure,

I(i) =







−1 if code is Realistic
1 if code is Social
0 otherwise

and fit the model
logit(πw) = α+ βI(i)

This model has df = 4, G2 = 4.54, p = .24. This fits almost as good as
the model in which the odds for realistic and social are fit perfectly:

∆G2 = 4.54 − 4.32 = .22

with ∆df = 4− 3 = 1, which is the likelihood ratio test of
HO : βsocial = −βrealistic = β.
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Comparing Adjusted Residuals

The adjusted residuals look pretty good for new model

Model
Holland Code Independence Association

Realistic −3.76 .37
Investigative −2.15 −0.86
Artistic −.16 .02
Social 4.78 .27
Enterprizing −.73 −.56
Conventional 1.55 1.77
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Interpretation

β̂ = 2.9240 with ASE= .7290.

Gender and codes are independent, except for the codes other than Realistic and
Social.

The odds that a woman (versus a man) with a science career has a primary code
of Social is

exp
[

β̂(1− (−1))
]

= exp(2(2.9240)) = e5.848 = 346.54

times the odds that the career has a primary code of Realistic.

The odds ratio of Social versus Other than Realistic equals

exp
[

β̂(1− 0)
]

= exp(2.9240) = 18.62

The odds ratio of Realistic versus Other than Social equals

exp
[

β̂(0− 1)
]

= exp(−2.9240) = 1/18.62 = .05
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Collapsing Over Categories

Returning to the snow shovelling data, rather than deleting Catholics, perhaps the
effect of religion on the response can be accounted for by a single religious
category. If so, then we can collapse the religion variable and get a more
parsimonious and compact summary of the data.
To investigate this, we replace religion by a series of 4 binary variables

P = Protestant (i.e., P = 1 if Protestant, 0 otherwise).

C = Catholic (i.e., C = 1 if Catholic, 0 otherwise).

J = Jewish (i.e., J = 1 if Jewish, 0 otherwise).

O = Other (i.e., O = 1 if not P, C, or J, and 0 otherwise).

Using all 4 variables (instead of just 3), we introduce redundancy in the data.
This allows us to treat the 4 categories of religion symmetrically.
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New display of the data

A 6–way, incomplete table

Four Religion Variables 1953 1971
Protestant Catholic Jewish Other Boy Both Boy Both
1 1 1 1 — — — —
1 1 1 0 — — — —
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Models for Snow Shovelling

Since G (gender) is considered the response and all log-linear models must
include λY PCJO terms (and lower order ones).

Here are some of the fit to the data models.

Model df G2

Fit previously
(YPCJO,GY) 6 11.2
(YPCJO,GY,GPCJO) 3 0.4

New ones
(YPCJO,GY,GO) 5 9.8
(YPCJO,GY,GJ) 5 10.9
(YPCJO,GY,GC) 5 1.4
(YPCJO,GY,GP) 5 4.8
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Conclusions for Snow Shovelling

The (YPCJO,GY,GC) model which has a main effect for year (GY) and an
effect of being Catholic fits well.

In other words, the interaction between religion and response is due
primarily to Catholic mothers.

In this example, we can collapse religion into a single dichotomous variable
(Catholic, Not Catholic).
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Summary

Association Graphs.

Introduction.

Collapsibility.

Representing models.

Modeling ordinal association.

linear by linear association, (and RC(M) association model & correspondence
analysis)

ordinal tests of independence.

Testing conditional independence.

Effects of sparse data.

Model fitting details.

A hybrid models (log-linear with numerical predictors)
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