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Outline

In this set of notes:

Loglinear models for 2–way tables.
Loglinear models for 3–way tables.
Statistical inference & model checking.
Statistical versus Practical Significance.
Higher–way tables.
The logit–log-linear model connection. (We’ll discuss further
connections when we cover multicategory logit models).
Model building (graphical models).
Modeling ordinal associations, including linear × linear association
models.
Modeling approach to testing conditional independence.
Sparse data, including

Structural zeros
Sampling zeros
Effect on G 2 and X 2.
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Log-linear models (or Poisson regression)

log(µ) = α+ β1x1 + β2x2 + . . . + βkxk

where µ = response variable = count (or rate)

A very common use of log-linear models is for modeling counts in
contingency tables; that is, the explanatory variables are all categorical.

Log-linear models are used to model the association (or interaction
structure) between/among categorical variables.

The categorical variables (which in GLM terminology are explanatory
variables) are the “responses” in the sense that we’re interested in describing
the relationship between the variables.

This use of “response” differs from our use in GLM. For log-linear models,
the response variable are the cell frequencies (counts) in the contingency
table.
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Log-linear Models for 2-way Tables

Review of notations for 2-way Contingency tables:

I = the number of rows.

J = the number of columns.

I × J contingency table.

N = IJ = the number of cells in the table.

n = the number of subjects (respondents, objects, etc.)
cross-classified by 2 discrete (categorical) variables.
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Example: 1989 GSS data

From Demaris: Cross-classification of respondents according to

Choice for president in the 1988 presidential election
(Dukakis or Bush).

Political View with levels liberal, moderate, conservative.

Political Vote Choice
View Dukakis Bush Total

Liberal 197 65 263
Moderate 148 186 334
Conservative 68 242 310

413 493 906
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A More Recent Example

Cross-classification of respondents to the General Social Survey from 1996.

Choice for president in the 1992: presidential election:

“If you voted in 1992, did you vote for Clinton, Bush or Perot?”

Political View with levels liberal, moderate, conservative.

“We hear a lot of talk these days about liberals and conservatives.
I’m going to give you a scale . . .Where do you place yourself on this
scale?”

The scale had 7 levels: extremely liberal, liberal, slightly liberal,
moderate, etc., but I collapsed them in to 3.
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The 1996 Data

Political Vote Choice
View Bush Clinton Perot Total

Liberal 70 342 56 468
(.15) (.73) (.12) 1.00

Moderate 195 332 101 628
(.31) (.53) (.16) 1.00

Conservative 382 199 117 698
(.55) (.29) (.17) 1.00

Total 647 873 274 1794
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Statistical Independence

The joint probabilities {πij} of observations falling into a cell equal the
product of the marginal probabilities,

πij = πi+π+j for all i = 1, . . . , I and j = 1, . . . , J

The frequencies (cell counts) equal

µij = nπij = nπi+π+j for all i , j

The probabilities πij are the parameters of Binomial or Multinomial
distribution.

In Log-linear models, the response variable equals the counts and expected
cell counts {µij}, rather than cell probabilities {πij}; therefore, the random
component is Poisson.

Taking logarithms gives us a log-linear model of statistical independence
log(µij) = log(n) + log(πi+) + log(π+j )
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Log-Linear Model of Statistical Independence

“Log-linear model of independence” for 2–way contingency tables:

log(µij) = λ+ λX
i + λY

j

This is an “ANOVA” type representation.
λ represents an “overall” effect or a constant.

It term ensures that
∑

i

∑

j µij = n.

λX
i represents the “main” or marginal effect of the row variable X . It

represents the effect of classification in row i .

The λX
i ’s ensure that

∑

j µij = µi+ = ni+.

λY
j represents the “main” or marginal effect of the column variable Y

& represents the effect of classification in column j .

The λY
j ’s ensure that

∑

i µij = µ+j = n+j .
The re-parametrization allows modeling association structure.
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Log-linear model of Statistical Independence

log(µij) = λ+ λX
i + λY

j

& hypothesis test of statistical independence in 2–way tables.

The estimated expected cell counts for the chi-squared test of
independence equal (from beginning of course)

µ̂ij =
ni+n+j

n

which also equal the estimated fitted values for the independence
log-linear model.
The significance of this: The X 2 and G 2 tests of independence are
goodness–of–fit tests of the independence log-linear model.
The null hypothesis of independence is equivalent to

The model log(µij) = λ+ λX
i + λY

j holds.

and the alternative hypothesis of dependence is equivalent to

The model log(µij) = λ+ λX
i + λY

j does not hold.
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Example

The observed and estimated fitted values

Political Vote Choice
View Bush Clinton Perot Total

Liberal 70 342 56 468
(168.78) (227.74) (71.478)

Moderate 195 332 101 628
(226.49) (305.60) (95.915)

Conservative 382 199 117 698
(251.73) (339.66) (106.61)

Total 647 873 274 1794

The fitted values satisfy the definition of independence perfectly. e.g., for
the (Liberal, Bush) cell n1+n+1

n
= (468)(647)

1794 = 168.78
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Example: SAS & R

Fit Independence model in SAS:

PROC GENMOD ORDER=DATA;
CLASS pview choice;
MODEL count = pview choice / LINK=log DIST=Poisson OBSTATS;

The observed and estimated fitted values

R:
summary(i.mod ← glm(count ∼ view + choice,

data=gss.data,family=poisson) )

(X2 ← sum(residuals(indep.mod,type=c("pearson"))**2))

i.mod$fitted
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Independence also implies

that the odds ratios for every 2× 2 sub-table must equal 1.
For our example, fitted odds ratio for each of the 3 possible sub-tables for
Bush and Clinton:

(168.78)(305.60)/(227.74)(226.49) = 1.00

(226.49)(339.66)/(305.60)(251.73) = 1.00

(168.78)(339.66)/(227.74)(251.73) = 1.00

The same is true for all possible (2× 2) sub-tables.

Fit statistics for the independence log-linear model. . .
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Independence (continued)

Fit statistics for the independence log-linear model:

Statistic df Value p–value

X 2 4 252.10 < .0001
G 2 4 262.26 < .0001
Log Likelihood 7896.55

These are the same the X 2 and G 2 we get when testing independence.
You get these in SAS from PROC FREQ or GENMOD. In R, “deviance”
from glm is G 2 and can compute X 2 using X2 <-

sum(residuals(indep.mod,type=c("pearson"))**2).

Any guesses as to what model might fit these data?
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Log-linear Model as a GLM

For I × J Tables

Random component. The N = IJ counts in the cells of the
contingency tables are assumed to be N independent observations of
a Poisson random variable. Thus, we focus on expected values of
counts:

E (counts) = µij

Link is log (canonical link for the Poisson distribution).

Systematic component is a linear predictor with discrete variables.

Loglinear model (of independence) is

log(µij) = λ+ λX
i + λY

j
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Log-Linear Model Parameters

log(µij) = λ+ λX
i + λY

j

The row and column variables (X and Y , respectively) are both “response”
variables (classification variables) in the sense that this model represents the
relationship between the 2 variables.

Log-linear models do not distinguish between “response” and explanatory
(predictor) variables.

When one variable is a response variable, then this influences (guides) the
interpretation of parameters (as well as choice of model).

Case of an I × 2 tables where the column classification (Y ) is the “response” or
outcome variable and the row classification (X ) is an explanatory variable. e.g.,
1992 Presidential election
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E.g., 1992 Presidential Election

Just consider Clinton and Bush and re-fit the independence model.
Let π = Prob(Y = 1) = Prob(Clinton), so

logit(π) = log(µi1/µi2)

= log(µi1)− log(µi2)

= (λ+ λX
i + λY

1 )− (λ+ λX
i + λY

2 )

= λY
1 − λY

2

which does not depend on the row variable.

The log-linear model of independence corresponds to the logit model with
only an intercept term; that is,

logit(π) = α

where α = (λY
1 − λY

2 ) is the same for all rows (levels of political view).

Odds = exp(α) = exp(λY
1 − λY

2 ) is the same for all rows.
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Interpretation of Parameters

When there are only 2 levels of the response, logit models are
preferable (fewer terms in the model). This is especially true when we
have 2 or more explanatory variables.

Log-linear models are primarily used when modeling the relationship
among 2 or more categorical responses.

Odds ratios are functions of model parameters:

log(odds ratio) = log(θ(12,12)) = log

(

µ11µ22

µ12µ21

)

= (λ+ λX
1 + λY

1 ) + (λ+ λX
2 + λY

2 )

−(λ+ λX
1 + λY

2 )− (λ+ λX
2 + λY

1 )

= 0

So the odds ratio, θ = exp(0) = e0 = 1.
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Parameter Identification Constraints

Identification constraints on parameters to be able to estimate them from
data.

There is not a unique set of parameters.

There are I terms in the set {λX
i }, but 1 is redundant.

There are J terms in the set {λY
j }, but 1 is redundant.

Possible (typical) constraints:

1 Fix 1 value in a set equal to a constant, usually 0. SAS/GENMOD
sets the last one equal to 0, e.g., λX

I = 0.. . . dummy coding (i.e.,
X = 0, 1). R glm sets the first equal to 0, e.g., λX

1 = 0.

2 Fix the sum of the terms equal to a constant, usually 0.
SAS/CATMOD uses zero sum or “ANOVA” type constraints. e.g.,
∑I

i=1 λ
X
i = 0.. . . “effect” coding (i.e., X = 1, 0,−1). R: create

variables to get effect codes.
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What’s Unique about the Parameters?

The differences between them are unique:

(λ̂Y
1 − λ̂Y

2 ) = unique value

(λ̂X
1 − λ̂X

2 ) = unique value

Since differences are unique,

log(odds) = log(θ) = unique value

and odds = unique value

The goodness-of-fit statistics are unique.

The fitted values are unique, which takes more space to show. . .
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Fitted Values are Unique

e.g., for 2× 2

log(µ̂ij) = α+ λXXi + λYYj

For Dummy Coding (i.e., X1 = 0,X2 = 1 and Y1 = 0,Y2 = 1),

log(µ̂ij) =















λ for (1, 1)
λ+ λX for (2, 1)
λ+ +λY for (1, 2)
λ+ λX + λY for (2, 2)

For Effect Coding (i.e.,X1 = −1,X2 = 1 and Y1 = −1,Y2 = 1),

log(µ̂ij) =















λ∗ − λ∗X − λ∗Y for (1, 1)
λ∗ + λ∗X − λ∗Y for (2, 1)
λ∗ − λ∗X + λ∗Y for (1, 2)
λ∗ + λ∗X + λ∗Y for (2, 2)

What’s the correspondence?
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Saturated Log-linear Model for 2–way Tables

If rows and columns are dependent, then

log(µij) = λ+ λX
i + λY

j + λXY
ij

λ, λX
i , and λY

j , are the overall and marginal effect terms (as defined
before).
λXY
ij ’s

Represent the association between X and Y .
Reflect the departure or deviations from independence.
Ensure that µij = nij

Fits the data perfectly; the fitted values are exactly equal to the
observed values.
Has as many unique parameters are there are cells in the table (i.e.,
N = IJ), so df = 0.
Called the “Saturated Model”.
Is the most complex model possible for a 2–way table.
Has independence as a special case (i.e., the model with λXY

ij = 0 for
all i and j).
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Parameters and Odds Ratios

There is a functional relationship between the model parameters and odds
ratios, which is how we are defining and measuring interactions.

log(θii ′,jj ′) = log(µijµi ′j ′/µi ′jµij ′)

= log(µij) + log(µi ′j ′)− log(µi ′j)− log(µij ′)

= (λ+ λX
i + λY

j + λXY
ij ) + (λ+ λX

i ′ + λY
j ′ + λXY

i ′j ′ )

−(λ+ λX
i ′ + λY

j + λXY
i ′j )− (λ+ λX

i + λY
j ′ + λXY

ij ′ )

= λXY
ij + λXY

i ′j ′ − λXY
i ′j − λXY

ij ′

The odds ratio θ measures the strength of the association and depends
only on the interaction terms {λXY

ij }.
How many numbers do we need to completely characterize the association
in an I × J table?
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Parameters Needed to Describe Association

(I − 1)(J − 1), the number of unique λXY
ij = Id. constraints:

Fix 1 value equal to a constant, e.g.,

λXY
i1 = λXY

1j = 0

Fix the sum equal to a constant, i.e.,
∑

i

λXY
ij =

∑

j

λXY
ij = 0

Count of unique parameters:

Number of Number of Number
Terms Terms Constraints Unique
λ 1 0 1
{λX

i } I 1 I − 1
{λY

j } J 1 J − 1

{λXY
ij } IJ I + J − 1 (I − 1)(J − 1)

Total IJ = N cells of table
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Parameters Needed to Describe Association

We generally hope to find models that are simpler than the data itself
(simpler than the saturated model). Simpler models “smooth” the sample
data and provide more parsimonious descriptions.

When we have 3 or more variables, we can include 2-way interactions and
the model will not be saturated.
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Hierarchical Models

We’ll restrict attention to hierarchical models.

Hierarchical models include all lower-order terms that comprise the
the higher-order terms in the model.

Is this a hierarchical model?

log(µij) = λ+ λX
i + λXY

ij

Restrict attention to hierarchical models because

We want interaction terms to represent just the association
(dependency).
Without lower order terms, the statistical significance and (substantive)
interpretation of interaction terms would depend on how variables were
coded.
With hierarchical models, coding doesn’t matter.
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Hierarchical∗∗ Models (continued)

If there is an interaction in the data, we do not look at the lower-order
terms, but interpret the higher-order (interaction) terms. It can be
misleading to look at the lower-order terms, because the values will
depend on the coding scheme.
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Log-linear Models for 3–way Tables

Example: We can add a third variable to our GSS presidential election data —
gender.

Gender Political Choice for President
View Bush Clinton Perot Total

Males Liberal 26 121 24 171
Moderate 82 128 52 262
Conservative 202 75 74 351

Females Liberal 44 221 32 297
Moderate 113 204 49 366
Conservative 180 124 43 347

The most saturated log-linear model for this table is

log(µijk) = λ+ λP
i + λC

j + λG
k + λPC

ij + λPG
ik + λCG

jk + λPCG
ijk

where G = gender, P = political view, C = choice.
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Saturated Model for 3–way Table

More generally, the most complex log-linear model (the saturated model)
for a 3–way table

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk + λXYZ
ijk

Simpler models set higher order interaction terms equal to 0.

Overview of hierarchy of models for 3–way contingency tables
(from complex to simple)

C.J. Anderson (Illinois) Log-linear Models for Contingency Tables 29.1/ 112



Overivew LL2-way Parm Constraints LL3–way Inference Stat vs Practical 4+–Wa

Overview of Models for 3–way Table

3–way Association (XYZ )

Homogeneous association (XY ,XZ ,YZ )

Conditional
Independence

(XY ,XZ ) (XY ,YZ ) (XZ ,YZ )

Joint
Independence

(XY ,Z ) (XZ ,Y ) (X ,YZ )

Complete Independence (X ,Y ,Z )
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Blue Collar worker data

(Andersen, 1985)
Bad Management Good Management

Worker’s Worker’s
satisfaction satisfaction
Low High Low High

Supervisor’s Low 103 87 190 Low 59 109 168
satisfaction High 32 42 74 High 78 205 283

135 129 264 137 314 451

θ̂bad = 1.55 and 95% CI for θbad (.90, 1.67)

θ̂good = 1.42 and 95% CI for θgood (.94, 2.14)
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Blue Collar worker data Analyses

CMH for testing whether worker and supervisor satisfaction is
conditionally independent given management quality = 5.42,
p–value= .02

The combined G 2’s from separate partial tables
= 2.57 + 2.82 = 5.39, df = 1 + 1 = 2, p–value= .02.

Bad Management Good Management
Statistic df Value p–value Value p–value

X 2 1 2.56 .11 2.85 .09
G 2 1 2.57 .11 2.82 .09

Mantel-Haenszel estimator of common odds ratio (for
Worker–Supervisor or “W-S” odds ratio) = 1.47.

Breslow-Day statistic = .065, df = 1, p–value= .80.
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Complete Independence

There are no interactions; everything is independent of everything else.

log(µijk) = λ+ λX
i + λY

j + λZ
k

Depending on author, this model is denoted by

(X ,Y ,Z ) (e.g., Agresti) or [X ,Y ,Z ]

(X )(Y )(Z ) or [X ] [Y ] [Z ] (e.g., Fienberg).

Degrees of freedom are computed in the usual way:

df = # cells−# unique parameters

= # cells− (# parameters−# constraints)

= IJK − 1− (I − 1)− (J − 1)− (K − 1)
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Complete Independence (continued)

log(µijk) = λ+ λX
i + λY

j + λZ
k

In terms of associations, all partial odds ratios equal 1,

θXY (k) = θii ′,jj ′,(k) = µijkµi ′j ′k/µi ′jkµij ′k = 1

θYZ(i) = θ(i),jj ′,kk′ = µijkµij ′k′/µij ′kµijk′ = 1

θXZ(j) = θii ′,(j),kk′ = µijkµi ′jk′/µi ′jkµijk′ = 1
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Joint Independence

Two variables are “jointly” independent of the third variable. For example,
X and Y and jointly independent of Z ,

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij

This model may be denoted as

(XY ,Z ) or [XY ,Z ].

(XY )(Z ) or [XY ] [Z ].

Degrees of Freedom:

df = IJK − 1− (I − 1)− (J − 1)− (K − 1)− (I − 1)(J − 1)

= (IJ − 1)(K − 1)
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Joint Independence Continued

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij

The partial or conditional odds ratios for XZ given Y and the odds ratios
for YZ given X equal 1.

θXZ(j) = θii ′,(j),kk′ = µijkµi ′jk′/µi ′jkµijk′ = 1

θYZ(i) = θ(i),jj ′,kk′ = µijkµij ′k′/µij ′kµijk′ = 1

And what does θXY (k) equal?
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Joint Independence (continued)

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij

log(θXY (k)) = log(θii ′,jj ′(k))

= log(µijkµi ′j ′k/µi ′jkµij ′k)

= (λ+ λX
i + λY

j + λZ
k + λXY

ij )

+(λ+ λX
i ′ + λY

j ′ + λZ
k + λXY

i ′j ′ )

−(λ+ λX
i ′ + λY

j + λZ
k + λXY

i ′j )

−(λ+ λX
i + λY

j ′ + λZ
k + λXY

ij ′ )

= λXY
ij + λXY

i ′j ′ − λXY
i ′j − λXY

ij ′
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Joint Independence (continued)

θXY (k) = θii ′,jj ′(k) = exp(λXY
ij + λXY

i ′j ′ − λXY
i ′j − λXY

ij ′ ) =
eλ

XY
ij e

λXY
i′j′

e
λXY
i′ j e

λXY
ij′

The interaction terms represent the association between X and Y .

Since θXY (k) does not depend on k (level of variable) Z , we know
that θXY (1) = θXY (2) = . . . = θXY (K)
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Conditional Independence

Two variables are conditionally independent given the third variable. e.g.,
the model in which Y and Z are conditionally independent given X equals

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik

This model may be denoted by

(XY ,XZ ) or [XY ,XZ ].

(XY )(XZ ) or [XY ] [XZ ].

df = IJK − 1− (I − 1)− (J − 1)− (K − 1)

−(I − 1)(J − 1)− (I − 1)(K − 1)

= I (J − 1)(K − 1)
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Conditional Independence (continued)

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik

The partial odds ratios of YZ given X equals 1:

log(θYZ(i)) = log(θ(i),jj ′,kk′)

= log(µijkµij ′k′/µij ′kµijk′)

= log(µijk) + log(µij ′k′)− log(µij ′k)− log(µijk′) = 0

θYZ(i) = θ(i),jj ′,kk′ = exp(0) = e0 = 1
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Conditional Independence: θXY (k) & θXZ (j)

θXY (k) = θii ′,jj ′(k) = exp(λXY
ij + λXY

i ′j ′ − λXY
i ′j − λXY

ij ′ )

θXZ(j) = θii ′,(j),kk′ = exp(λXZ
ik + λXZ

i ′k′ − λXZ
i ′k − λXZ

ik′ )

The partial odds ratios are completely characterized by the
corresponding 2–way interaction terms from the model (and no other
parameters).

Neither of these depend on the level of the third variable.

Since the partial odds ratios are equal across levels of the third
variable,

θXY (1) = θXY (2) = . . . = θXY (K)

and θXZ(1) = θXZ(2) = . . . = θXZ(J)
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Homogeneous Association

or the “no 3–factor interaction model”.

This is a model of association; it is not an “independence” model, but it is
also not the most complex model possible.

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk

This model may be denoted by

(XY ,XZ ,YZ ) or [XY ,XZ ,YZ ].
(XY )(XZ )(YZ ) or [XY ] [XZ ] [YZ ].

df = IJK − 1− (I − 1)− (J − 1)− (K − 1)− (I − 1)(J − 1)

−(I − 1)(K − 1)− (J − 1)(K − 1) = (I − 1)(J − 1)(K − 1)

df = the number of odds ratios to completely represent a 3–way
association?
None of the partial odds ratios (necessarily) equal 1.
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Homogeneous Association (continued)

The partial odds ratios are a direct function of the model parameters

θXY (k) = θii ′,jj′,(k) = exp(λXY
ij + λXY

i ′j′ − λXY
i ′j − λXY

ij′ )

θXZ (j) = θii ′,(j),kk′ = exp(λXZ
ik + λXZ

i ′k′ − λXZ
i ′k − λXZ

ik′ )

θYZ (i) = θ(i),jj′,kk′ = exp(λYZ
jk + λYZ

j′k′ − λYZ
j′k − λYZ

jk′ )

Each of the partial odds ratios for 2 variables given levels of the third variable

depends only on the corresponding 2–way interaction terms.

do not depend on levels of the third variable.

are equal across levels of the third variable.
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3–way Association (the saturated model)

This model has a three factor association

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk + λXYZ
ijk

This model may be denoted by (XYZ ) or [XYZ ].

df = 0
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3–way Association (the saturated model)

The partial odds ratios for two variables given levels of the third variable
equal

log(θXY (k)) = log(θii ′,jj′(k))

= log(µijkµi ′j′k/µi ′jkµij′k)

= λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk + λXYZ
ijk

+λ+ λX
i ′ + λY

j′ + λZ
k + λXY

i ′j′ + λXZ
i ′k + λYZ

j′k + λXYZ
i ′j′k

−λ+ λX
i ′ + λY

j + λZ
k + λXY

i ′j + λXZ
i ′k + λYZ

jk + λXYZ
i ′jk

−λ+ λX
i + λY

j′ + λZ
k + λXY

ij′ + λXZ
ik + λYZ

j′k + λXYZ
ij′k

= (λXY
ij + λXY

i ′j′ − λXY
i ′j − λXY

ij′ )

+(λXYZ
ijk + λXYZ

i ′j′k − λXYZ
i ′jk − λXYZ

ij′k )
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3–way Association

A measure/definition of 3–way association is the ratio of partial odds ratios
(ratios of ratios of ratios),

Θii ′,jj′,kk′ = θXY (k)/θXY (k′)

which in terms of our model parameters equals

Θii ′,jj′,kk′ =
θii ′,jj′(k)

θii ′,jj′(k′)

= exp(λXYZ
ijk + λXYZ

i ′j′k + λXYZ
i ′jk′ + λXYZ

ij′k′

−λXYZ
i ′jk − λXYZ

ij′k − λXYZ
ijk′ − λXYZ

i ′j′k′)

That is, the 3–way association is represented by the 3–way interaction terms
{λXYZ

ijk }.

There are analogous expressions for θXZ (j) and θYZ (i).

C.J. Anderson (Illinois) Log-linear Models for Contingency Tables 46.1/ 112



Overivew LL2-way Parm Constraints LL3–way Inference Stat vs Practical 4+–Wa

Summary of Hierarchy of Models

Complete Independence (X ,Y ,Z )

Joint
Independence

(XY ,Z ) (XZ ,Y ) (X ,YZ )

Conditional
Independence

(XY ,XZ ) (XY ,YZ ) (XZ ,YZ )

Homogeneous association (XY ,XZ ,YZ )

3–way Association (XYZ )

Any model that lies below a given model may be a special case of the more
complex model(s).
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Example: Blue Collar Workers

Fitted values and observed values from some models
no

Manage Super Worker nijk M , S ,W MS ,W MS ,MW MSW
bad low low 103 50.15 71.78 97.16 102.26
bad low high 87 82.59 118.22 92.84 87.74
bad high low 32 49.59 27.96 37.84 32.74
bad high high 42 81.67 46.04 36.16 41.26
good low low 59 85.10 63.47 51.03 59.74
good low high 109 140.15 104.53 116.97 108.26
good high low 78 84.15 105.79 85.97 77.26
good high high 205 138.59 174.21 197.28 205.74

Example: (M , S ,W ) and partial odds ratio for S and W

θ̂SW = (50.15)(81.67)/(82.59)(49.59) = 1.00
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Fitted (partial) Odds Ratios

Fitted Partial Odds Ratio
Model W and S M and W M and S

(M,S ,W ) 1.00 1.00 1.00
(MS ,W ) 1.00 1.00 4.28
(MS ,MW ) 1.00 2.40 4.32
(MS ,WS ,MW ) 1.47 2.11 4.04
(MSW )–level 1 1.55 2.19 4.26
(MSW )–level 2 1.42 2.00 3.90
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Inference for Log-linear Models

1 Chi–squared goodness of fit tests.

2 Residuals.

3 Tests about partial associations (e.g., HO : λXY
ij = 0 for all i , j).

4 Confidence intervals for odds ratios.
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Chi–squared goodness-of-fit tests

where HO is

a model “holds”.

a model gives a good (accurate) description/representation of the data.

log(µij) = some model (i.e., expected frequencies given by loglinear model).

For “large” samples chi–squared statistics to test this hypothesis, we compare the
observed and estimated expected frequencies.

Likelihood ratio statistic: G 2 = 2
∑

i

∑

j

∑

k

nijk log

(

nijk
µ̂ijk

)

Pearson statistic: X 2 =
∑

i

∑

j

∑

k

(nijk − µ̂ijk)
2

µ̂ijk
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Chi–squared goodness-of-fit tests

If HO is true and for larger samples, these statistics are approximately chi-squared
distributed with degrees of freedom

df = (# cells)− (# non-redundant parameters)

= (# cells)− (# parameters) + (# id constraints)

Blue collar worker data:
Model df G 2 p–value X 2 p-value
(M , S ,W ) 4 118.00 < .001 128.09 < .001
(MS ,W ) 3 35.60 < .001 35.72 < .001
(MW , S) 3 87.79 < .001 85.02 < .001
(M ,WS) 3 102.11 < .001 99.09 < .001
(MW , SW ) 2 71.90 < .001 70.88 < .001
(MS ,MW ) 2 5.39 .07 5.41 .07
(MS ,WS) 2 19.71 < .001 19.88 < .001
(MW , SW ,MS) 1 .065 .80 .069 .80

These are all global tests.
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Residuals

Local (miss)fit. A good model has small residuals.

We can use Pearson residuals

eijk =
(observed− expected)
√

V̂ar(expected)

=
(nijk − µ̂ijk)
√

µ̂ijk

or
adjusted residual =

eijk
√

(1− hijk )

where hijk equals the leverage of cell (i , j , k).
If the model holds, then adjusted residuals ≈ N(0, 1)
Adjusted residuals suggest a lack of fit of the model

When there are few cells (small N) and adjusted residuals > 2.

When these are lots and lost of cells (larger N) and adjusted residuals > 3.
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Residuals & Blue Collar Data

(MS ,MW ) (MS ,MS ,WS)
Manage Super Worker nijk µ̂ijk adj res µ̂ijk adj res
bad low low 103 97.16 1.60 102.26 .25
bad low high 87 92.84 -1.60 87.74 -.25
bad high low 32 37.84 -1.60 32.74 -.25
bad high high 42 36.16 1.60 41.26 .25
good low low 59 51.03 1.69 59.74 -.25
good low high 109 116.97 -1.69 108.26 .25
good high low 78 85.97 1.69 77.26 .25
good high high 205 197.28 -1.69 205.74 -.25

df for the model (MS ,MW ) equals 2 and therefore there are only 2
non-redundant residuals.

df for the model (MS ,MW ,WS) equals 1 and therefore there is only 1
non-redundant residual.
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Hypothesis about partial association

The following are all equivalent statements of the null hypothesis
considered here:

There is no partial association between two variables given the level of
the third variable.

e.g., There is no partial association between supervisor’s job
satisfaction and worker’s satisfaction given management quality.

The conditional or partial odds ratios equal 1.00.

e.g., θSW (i) = 1.00.

The two-way interaction terms equal zero.

e.g., λSW
jk = 0.
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Tests about partial association

To test partial association, we use the likelihood ratio statistic −2(LO − L1) to
test the difference between a restricted and a more complex model.

e.g., The restricted model or MO is (MS ,MW ) or

log(µijk ) = λ+ λM
i + λS

j + λW
k + λMS

ij + λMW
ik

and the more complex model M1 is (MS ,MW ,MS)

log(µijk ) = λ+ λM
i + λS

j + λW
k + λMS

ij + λMW
ik + λSW

ij

The likelihood ratio statistic −2(LO − L1) equals the difference between the
deviances of the 2 models, or equivalently the difference in G 2 for testing model
fit.
e.g., G 2 [(MS ,MW )|(MS ,MW ,WS)] = G 2(MS ,MW )− G 2(MS ,MW ,WS) and
df = df (MS ,MW )− df (MS ,MW ,WS).
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Example Testing partial association

Model df G 2 p HO ∆df ∆G 2 p
(MW , SW ,MS) 1 .065 .80 — — — —

(MW , SW ) 2 71.90 < .001 λMS
ij = 0 1 71.835 < .01

(MS ,MW ) 2 5.39 .07 λSW
jk = 0 1 5.325 .02

(MS ,WS) 2 19.71 < .001 λMW
ik = 0 1 19.645 < .01

Sample size and hypothesis tests:

With small samples, “reality may be much more complex than indicated by
the simplest model that passed the goodness-of-fit test.

With large samples, “. . . statistically significant effects can be weak and
unimportant.”
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Summary

(M , S ,W )
df = 4

G 2 = 118.0

(MS ,W )
df = 3

G 2 = 35.6

(MW , S)
df = 3

G 2 = 87.79

(M , SW )
df = 3

G 2 = 102.11

(MS ,MW )
df = 2

G 2 = 5.39

∆df = 1
∆G 2 = 5.33 ∆G 2 = 19.645 ∆G 2 = 71.84

(MS , SW )
df = 2

G 2 = 19.71

(MW , SW )
df = 2

G 2 = 71.90

(MS ,MW , SW )
df = 1

G 2 = .065

∆df = 1 ∆G 2 = .065

(MSW )
df = 0
G 2 = 0

✘
✘

✘
✘

✘
✘

✘
✘

✘
✘

❳
❳
❳
❳

❳
❳
❳
❳
❳
❳

❳
❳
❳
❳
❳
❳
❳
❳❳

❳
❳
❳
❳
❳
❳
❳
❳❳

✘
✘

✘
✘

✘
✘

✘
✘✘

✘
✘

✘
✘

✘
✘

✘
✘✘

❳
❳
❳
❳
❳
❳
❳
❳

✘
✘

✘
✘

✘
✘

✘
✘
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Confidence Intervals for Odds Ratios

. . . a bit more informative than hypothesis testing alone.

We know that odds ratios are direct functions of log-linear model parameters.

e.g., Suppose that we are interested in an estimate of the SW partial odds ratio.
Using the estimated parameters of the homogeneous association model
(MS ,MW , SW ) (estimated using SAS/GENMOD.

Estimate ASE

λ̂SW

low,low = .3847 .1667

λ̂SW

low,hi = .0000 .0000

λ̂SW

hi,low = .0000 .0000

λ̂SW

hi,hi = .0000 .0000

R will yield different parameter estimates but same estimate of odds ratio. What
would R glm estimates be?
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Confidence Intervals for Odds Ratios

log(θ̂SW (i)) = λ̂SW

low,low + λ̂SW

hi,hi − λ̂SW

low,hi − λ̂SW

hi,low
= .3827 + 0.00− 0.00 − 0.00

= .3827

and θ̂SW (i) = e.3827 = 1.4662.

A (1− α)× 100% confidence interval for log(θSW (i)) is

log(θ̂SW (i))± zα/2(ASE )

e.g., A 95% confidence interval for the log of the supervisor by worker
satisfaction odds ratio is

.3827 ± 1.96(.1667) −→ (.05596, .70943)

For confidence interval for the odds ratio take the anti-log of the interval
for log(θSW (i)) to get the confidence interval for the odds ratio. So the 95%
confidence interval for the (partial) odds ratio θSW (i) is

(e.05596, e.70943) −→ (1.058, 2.033)

Identification constraints don’t matter for the end results.
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Statistical versus Practical Significance

and Large Samples.

For the blue collar worker data, two models that could be a good model
(representation) of the data.

In favor of In favor of
Criterion (MS ,MW ) (MS ,MW , SW )
Model goodness
of fit G 2 = 5.39 .065

df = 2, p = .07 with df = 1, p = .80
Largest adjusted
residual 1.69 .25
Likelhood ratio G 2 = 5.325,
test of λSW

jk = 0 na df = 1, p = .02

Complexity simpler more complex

Question: Do we really need the SW partial association? Weak effect, but is
significant due to large sample size (n = 715) relative to table size
(N = 2× 2× 2 = 8)?
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Deciding on a Model: Subjective Judgment

When there is more than one reasonable model, additional things to
consider in choosing a single “best” model are

1 Substantive importance and considerations.

2 Closeness between observed and fitted odds ratios.

3 Dissimilarity index.

4 Correlations between observed and fitted values.

5 Information Criteria (AIC, BIC & others).

6 Analysis of association.

Let’s see if these help in making the decision between (MS ,MW ) and
(MS ,MW ,SW ).
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Similarity between the Fitted Odds Ratios

If two models have nearly the same values for the odds ratio, then choose
the simpler one.

What constitutes “nearly the same values” is a subjective decision.

Fitted partial odds ratios based two best model and the observed partial
odds ratios for the worker satisfaction data:

Fitted Odds Ratio
Model W–S M–W M–S

(MS ,MW ) 1.00 2.40 4.32
(MS ,WS ,MW ) 1.47 2.11 4.04

Observed or (MSW )–level 1 1.55 2.19 4.26
(MSW )–level 2 1.42 2.00 3.90

They seem similar. Whether they are “close” enough, that depends on
purpose or uses you’ll make of the results.
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Dissimilarity Index

For a table of with

Any dimension (e.g., (I × J), (I × J × K ), etc).

Cell counts equal to ni = npi .

Fitted counts equal to µ̂i = nπ̂i .

The “Dissimilarity Index” is a summary statistic of how close the fitted
values of a model are to the data. It equals

D =

∑

i |ni − µ̂i |

2n
=

∑

i |pi − π̂i |

2

Properties of D:

0 ≤ D ≤ 1.

D = the proportion of sample cases that need to move to a different
cell to have the model fit perfectly.
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Properties of the Dissimilarity Index

Small D means that there is little difference between fitted values and
observed counts.

Larger D means that there is a big difference between fitted values and
observed counts.

D is an estimate of the change, ∆, which measures the lack-of-fit of the
model in the population.

When the model fits perfectly in the population,

∆ = 0
D overestimates the lack-of-fit (especially for small samples).

For large samples when the model does not fit perfectly,

G 2 and X 2 will be large.
D reveals when the lack-of-fit is important in a practical sense.

Rule-of-thumb: D < .03 indicates non-important lack-of-fit.
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Example of the Dissimilarity Index

Bluecollar Example: For the model (MW ,MS)

D =
55.2306

2(715)
= .039

We would need to move 3.9% percent of the observations to achieve a
perfect fit of the model (MW ,MS) to observed (sample) data.

For the model (MW ,MS ,SW ),

D =
5.8888

2(715)
= .004

We would need to move .4% of the observations to achieve a perfect fit of
the models (MW ,MS ,SW ) to the observed data.

Which one? Possibly the model of conditional independence.
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Correlations between Counts and Fitted Counts

A large value indicates that the observed and fitted are “close”.

Worker satisfaction example:

For the model of conditional independence (MW ,MS),

r = .9906

and for the model of homogeneous association

r = .9999
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Information Criteria

Indices (statistics) that weigh goodness-of-fit of model to data,
complexity of the model, and in some cases sample size.

Good way to choose among reasonable models.

Does not require the models be nested.

Akiake Information Criteria (AIC):

AIC = −2 log(L) + 2(number of parameters)

Bayesian Information Criteria (BIC):

C.J. Anderson (Illinois) Log-linear Models for Contingency Tables 68.1/ 112



Overivew LL2-way Parm Constraints LL3–way Inference Stat vs Practical 4+–Wa

Information Criteria References

References:

Raftery, A.E. (1985). A note on Bayes factors for log-linear
contingency table models with vague prior information. Journal of the
Royal Statistical Society, Series B.

Raftery, A. E. (1986). Choosing models for cross-classifications.
American Sociological Review, 51, 145–146.

Spiegelhalter, D.J. and Smith, A.F.M. (1982). Bayes Factors for
linear and log-linear models with vague prior information. Journal of
the Royal Statistical Society, Series B, 44, 377–387.

1998 or 1999 special issue of Sociological Methodology & Research
on the BIC statistic.
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The Bayesian Approach to Model Selection

Another way of making the trade-off between a simple parsimonious model
(practical significance) and a more complex and closer to reality model (statistical
significance), besides using just G 2 and df .

Suppose you are considering a model, sayMo , and you are comparing it to
the saturated model,M1.

Which model gives a better description of the main features of the reality as
reflected in the data?

More precisely, which ofMo andM1 is more likely to be the “true” model?

Answer: posterior odds

B =
P(Mo |X )

P(M1|X )
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The BIC statistic

Skipping many details....for large samples:

BIC = −2 logB = G 2 − (df ) logN

where N =total number of observations.

If BIC is negative, acceptMo ; it’s preferable to the saturated model.

When comparing a set of models, choose the one with the smallest
BIC value. (The models do not have to be nested). This procedure
provides you with a consistent model in the sense that in large
samples, it chooses the correct model with high probability.
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Example of Information Criteria

Example: Worker Job Satisfaction × Supervisor’s Job Satisfaction × Quality of
Management

N = 715
# of

Model df G 2 p-value BIC Parameters AIC
(MSW) 0 0.00 1.000 .00 8 —
(MS)(MW)(SW) 1 .06 .800 -6.51 7 −13.94
(MW)(SW) 2 71.90 .000 58.76 6 59.90
(MS)(WS) 2 19.71 .000 6.57 6 7.71
(SM)(WM) 2 5.39 .068 -7.75 6 −6.61
(MW)(S) 3 87.79 .000 68.07 5 77.79
(WS)(M) 3 102.11 .000 82.07 5 92.11
(MS)(W) 3 35.60 .000 15.88 5 25.60
(M)(S)(W) 4 118.00 .000 91.71 4 110.00
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“Analysis of Association” Table

Another aid in helping to decide between practical and statistical significance.
This comes from Leo Goodman’s toolbox.

This is useful even when the sampling distribution of G 2 is not well approximated
by chi–squared distribution.

We use the G 2 from independence as a measure of the total association in the
data and see how much association is accounted for by certain effects.

∆ ∆ p- Cummul.
Effect Models df G 2 value % %
MS (M,S,W) - (MS,W) 1 82.40 .000 69.8% 69.8%
MW (MS,W) - (MS,MW) 1 30.21 .000 25.6% 95.4%
SW (MS,MW) - (MS,MW,SW) 1 5.33 .021 4.6% 100.0%
MSW (MS,MW,SW) - (MSW) 1 .06 .800 0.0% 0.0%
total (M,S,W) 4 118.00
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“Analysis of Association” Table

∆ ∆ p- Cummul.
Effect Models df G 2 value % %
MS (M,S,W) - (MS,W) 1 82.40 .000 69.8% 69.8%
MW (MS,W) - (MS,MW) 1 30.21 .000 25.6% 95.4%
SW (MS,MW) - (MS,MW,SW) 1 5.33 .021 4.6% 100.0%
MSW (MS,MW,SW) - (MSW) 1 .06 .800 0.0% 0.0%
total (M,S,W) 4 118.00

∆G 2 = the difference between goodness-of-fit statistics for the models
indicated.

∆df = the corresponding difference between the models’ df .

The column labeled “p-value” really shouldn’t be in this table.

Percent = ∆G 2/118.00. Note: 118.00 is the G 2 from (M,S,W).

Cumulative percent = sum of “Percent” of current and all rows above the
current one.
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Log-linear Models for 4+–Way Tables

They are basically the same as models for 3–way tables, but just more complex.
They can have many more 2– and 3–way associations, as well as higher–way
associations.

Example: These data come from a study by Thornes & Collard (1979), described
by Gilbert (1981), and analyzed by others (including Agresti, 1990; Meulman &
Heiser, 1996).
A sample of men and woman who filed for petition for divorce (they weren’t
married to each other), and a similar sample of married people were asked

“Before you were married to your (former) husband/wife, had you ever made
love to anyone else?”

“During your (former) marriage, (did you have) have you had any affairs or
tried sexual encounters with another man/woman?”
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Example of 4–Way Table

These data form a 4–way, 2× 2× 2× 2 table with variables

G for gender

E or EMS for whether reported extramarital sex.

P or PMS for whether reported premarital sex.

M for martial status.

Gender
Women Men

Martial PMS: Yes No Yes No
Status EMS: Yes No Yes No Yes No Yes No
Divorce 17 54 36 214 28 60 17 68
Still Married 4 25 4 322 11 42 4 130

For these data, a good model (perhaps the best) is (GP ,MEP)

G 2 = 8.15 df = 6 p = .23

(we’ll talk about how we arrived at this model later).
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Parameter Estimates for example

Estimated Parameters for the highest–way associations in the model (from
SAS/GENMOD)
Param df Est. ASE Wald p
PG yes women 1 -1.3106 .1530 73.4249 < .001
PG yes men 0 0.0000
PG no women 0 0.0000
PG no men 0 0.0000
MEP div yes yes 1 -1.7955 .5121 12.2948 < .001
MEP div yes no 1 0.0000
MEP div no yes 1 0.0000
MEP div no no 0 0.0000
MEP mar yes yes 1 0.0000
MEP mar yes no 0 0.0000
MEP mar no no 0 0.0000
MEP mar no no 0 0.0000
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Interpretation of GP Partial Association

Since λ̂GP
women,yes = −1.3106, given EMS and marital status the odds of

PMS for women is

e−1.3106 = .2696

times the odds for men.

Alternatively, given EMS and marital status, the odds of PMS for men is

e1.3106 = 1/.2696 = 3.71

times the odds for women.
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Using the Fitted Values

. . . from the (GP ,MEP) model. . .
Gender

Women Men
PMS: Yes No Yes No
EMS: Yes No Yes No Yes No Yes No
Divorced 18.67 47.30 38.40 204.32 26.33 66.70 14.60 77.68
Married 6.22 27.80 5.80 327.49 8.78 39.20 2.20 124.51

For EMS=yes and martial status=divorced

odds(PMS for woman)

odds(PMS for man)
=

(18.67)(14.60)

(38.40)(26.33)
= .2696

or for EMS=yes and martial status=married

odds(PMS for woman)

odds(PMS for man)
=

(6.22)(2.20)

(5.80)(8.78)
= .2696

which also equals the value if we use EMS=no.
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Martial–PMS–EMS partial association

Can use either our estimated parameters or using fitted values.
Fitted values from the (GP ,MEP) model

Gender
Women Men

PMS: Yes No Yes No
EMS: Yes No Yes No Yes No Yes No
Divorced 18.67 47.30 38.40 204.32 26.33 66.70 14.60 77.68
Married 6.22 27.80 5.80 327.49 8.78 39.20 2.20 124.51

The odds ratio for marital status and extramarital sex for those who did and
those who did not have premarital sex.

PMS=yes: Of those who had premarital sex, the odds of divorce given the person
had extramarital sex

θ̂ME |PMS=yes =
(18.67)(27.80)

(6.22)(47.30)
= 1.76

times the odds of divorce given the person did not have extramarital sex.

Note: We could also use the fitted values for men

θ̂ME |PMS=yes =
(26.33)(39.20)

(8.78)(66.70)
= 1.76
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Martial–PMS–EMS partial association

PMS=no Of those who did not have premarital sex, the odds of divorce given the
person had extramarital sex is

θ̂ME |PMS=no =
(38.40)(327.49)

(5.50)(204.32)
= 10.62

times the odds of divorce given the person did not have extramarital sex.

3–way EMP association: The partial odds ratio for marital status and
extramarital sex given the person did not have premarital sex are

10.62

1.76
= 6.03

times the partial odds ratio given the person did have premarital sex.

(We could have arrived at the same interpretation of the partial associations by
using the parameters of the log-linear model.)
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MEP Partial association

What do the odds ratios equal in terms of the model parameters?

Let i index M (marital status), j index EMS, k index PMS, and l index
Gender,

log

(

µ11klµ22kl

µ12klµ21kl

)

= log(µ11kl ) + log(µ22kl )− log(µ12kl )− log(µ21kl )

= λME
11 + λME

22 − λME
12 − λME

21

+λMEP
11k + λMEP

22k − λMEP
12k − λMEP

21k

λ̂ME
11 = 2.3960 (Divorced and had EMS),

all other λ̂ME
ij ’s equal zero.

λ̂MEP
111 = −1.7955 (Divorced, had EMS & had PMS),

all other λ̂ME
ijk ’s equal zero.
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MEP Partial association

Of those who had PMS (k = 1 = yes), the estimated odds ratio for marital status
and extramarital sex equals

exp(2.3626− 1.7955) = exp(.5671) = 1.76 (95%CI : 0.33, 9.21)

Of those who did not have PMS (k = 2 = no), the estimated odds ratio for
marital status and extramarital sex equals

exp(2.3626) = 10.62

and the ratio of the odds ratios equals

exp(2.3626− .5671) = exp(+1.7955) = 6.03 or exp(−1.7955) = 1/6.03

(95%CI : 7.92, 14.24)

Before summarizing the findings, how to compute CIs for these odds ratios. . .
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(1− α)× 100% CI for MEP Partial association

Of those who had PMS (k = 1 = yes), the estimated odds ratio for
marital status and extramarital sex equals

exp(λ̂ME
11 − λ̂MEP

111 ) = exp(2.3626 − 1.7955) = exp(.5671) = 1.76

Need the variances and covariance of parameters:

Σ =

(

σ2
ME σME ,MEP

σME ,MEP σ2
MEP

)

=

(

0.14962 −0.14962
−0.14962 0.2622

)

se(λ̂ME
11 − λ̂MEP

111 ) =
√

σ2
ME + σ2

MEP − 2σME ,MEP

=
√

0.14962 + 0.2622 − 2(−0.14962) = 0.84323

So. . .
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Computing CI for Partial association

So a (1− α)× 100% CI for the log of the MEP partial for those who had
PMS is

1.76± 1.96(0.84323) −→ .5671 ± 1.6527 −→ (−1.0856, 2.2198)

and for the MEP partial association for those who had PMS

(exp(−1.0856), exp(2.2198)) −→ (0.33, 9.21)
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Logit–Log-linear Model Connection

Log-linear models:

All variables are considered response variables; no distinction is made
between response and explanatory variables (in terms of a variable’s
role/treatement in an analysis).

Distribution = Poisson.

Link = Log.

Logit Models:

Represent how a binary response variable depends (or is related to) a
set of explanatory variables.

Distribution = Binomial.

Link = Logit.
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Logit/Log-linear Model Connection

Logit and log-linear models are related

Logit models are equivalent to certain log-linear model.

Log-linear models are more general than logit models.

More specifically,

1 For a log-linear model, you can construct logits for 1 (binary)
response variable to help interpret the log-linear model.

2 Logit models with categorical explanatory variables have equivalent
log-linear models.

The relationship is useful. . . use Logit models to interpret log-linear models
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Using Logit models to interpret loglinear models

For 2–way tables: Interpret log-linear models by looking at differences
between λ’s, which equal log of odds and functions of λ’s equal odds
ratios.

For 3–way tables: The blue collar worker data and the homogeneous
association model (MW ,MS ,SW ),

log µijk = λ+ λM
i + λS

j + λW
k + λMS

ij + λMW
ik + λSW

jk
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Using Logit models to interpret loglinear models

If we focus on worker’s job satisfaction, then we consider

πij = Prob(Hi worker satisfaction|M = i ,S = j)

and the logit model for worker job satisfaction is

logit(πij) = logit(πij)

= log

(

P(Hi worker satisfaction|M = i ,S = j)

P(Lo worker satisfaction|M = i ,S = j)

)

= log(µij2/µij1)

= log(µij2)− log(µij1)
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Using Logit models to interpret loglinear models

For 3–way tables (continued):

logit(πij) = (λW
2 − λW

1 ) + (λMW
i2 − λMW

i1 ) + (λSW
j2 − λSW

j1 )

= α+ βM
i + βS

j

This is the additive effects logit model , where

α = (λW
2 − λW

1 ) a constant.

βM
i = (λMW

i2 − λMW
i1 ).

The relationship (effect) of management quality between (on) worker
job satisfaction is the same at each level of supervisor’s job
satisfaction.
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Using Logit models to interpret loglinear models

logit(πij) = (λW
2 − λW

1 ) + (λMW
i2 − λMW

i1 ) + (λSW
j2 − λSW

j1 )

= α+ βM
i + βS

j

And. . .

βS
j = (λSW

j2 − λSW
j1 ).

The relationship (effect) of supervisor’s job satisfaction between (on)
worker job satisfaction is the same at each level of management quality.
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Example of 4-way Table

Marital status × EMS × PMS × Gender — A good model for these data is
(GP ,MEP).

We can use a logit model formulation to help interpret the results of the
(GP ,MEP) log-linear model,

logµijkl = λ+ λM
i + λE

j + λP
k + λG

l + λME
ij + λMP

ik

+λEP
jk + λGP

kl + λMEP
ijk

We will focus on marital status and form (log) odds of divorce,

log(
π1jkl

π2jkl
) = log(π1jkl )− log(π2jkl )

= (λM
1 − λM

2 ) + (λME
1j − λME

2j )

+(λMP
1k − λMP

2k ) + (λMEP
1jk − λMEP

2jk )

= α+ βE
j + βP

k + βEP
jk

and the estimated parameters for the logit model using the ones from thelog-linear model. . . .
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Marital status × EMS × PMS × Gender

Loglinear Model Parameters Logit
Marital Status Model

Divorced Married Parameters

λ̂M
1 = −.4718 λ̂M

2 = 0.00 α̂ = −.4718
EMS

yes λ̂ME
11 = 2.3626 λ̂ME

21 = 0.0000 β̂E
1 = 2.3626

no λ̂ME
12 = 0.0000 λ̂ME

22 = 0.0000 β̂E
2 = 0.0000

PMS

yes λ̂MP
11 = 1.0033 λ̂MP

21 = 0.0000 β̂P
1 = 1.0033

no λ̂MP
12 = 0.0000 λ̂MP

22 = 0.0000 β̂P
2 = 0.0000

EMS PMS

yes yes λ̂MEP
111 = −1.796 λ̂MEP

211 = 0.0000 β̂EP
11 = −1.796

yes no λ̂MEP
112 = 0.0000 λ̂MEP

212 = 0.0000 β̂EP
12 = 0.0000

no yes λ̂MEP
121 = 0.0000 λ̂MEP

221 = 0.0000 β̂EP
12 = 0.0000

no no λ̂MEP
122 = 0.0000 λ̂MEP

222 = 0.0000 β̂EP
22 = 0.0000
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Loglinear–Logit Model Equivalence

Marital status seems like a response/outcome variable, while the others seem to
be more explanatory/predictor variables.
So rather than fitting a log-linear model, we could treat the data as if we have
independent Binomial samples, and fit a logit model where the (binary) response
variable is marital status and the explanatory variables are Gender, EMS, and
PMS.

Marital Status
Gender PMS EMS Divorced Married total
Women yes yes 17 4 21

no 54 25 79
no yes 36 4 40

no 214 322 536
Men yes yes 28 11 39

no 60 42 102
no yes 17 4 21

no 68 130 198
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Loglinear–Logit Model Equivalence (continued)

The saturated logit model for these data

log

(

P(divorcedijk)

P(marriedijk)

)

= α+ βG
i + βE

j + βP
k + βGE

ij + βGP
ik

+βEP
jk + βGEP

ijk

Logit Model df G 2 p
E,G,P 4 13.63 .001
GP,E 3 13.00 < .001
EG,P 3 10.75 .010
EP,G 3 .70 .873
EG,GP 2 10.33 < .001
EP,GP 2 .44 .803
EG,EP 2 .29 .865
EG,EP,GP 1 .15 .700
EGP 0 0.00 1.00
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The “best” logit model is (EP,G )

logit(πijk) = α+ βG
i + βE

j + βP
k + βEP

jk ,

which is different from the logit model that we used to interpret our
log-linear model (GP ,EMP), i.e.,

logit(πijk) = α+ βE
j + βP

k + βEP
jk

The (GP ,EMP) log-linear model is not equivalent to any logit model that
we could fit to the data with marital status as the response variable
because. . . .
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The “best” logit model is (EP,G )

because. . . .

When we consider the data as 8 independent Binomial samples, the
“row” margin corresponding to the total number of observations for
each Gender × EMS × PMS combination is “ fixed.”

When we fit a log-linear model to the data, we should always include
parameters to ensure that the GEP margin is fit perfectly.

If marital status is our response variable, we are not interested in the
relationship between/among Gender, EMS, and PMS, except with
respect to how they are related to marital status.
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The log-linear equivalent to (G ,EP) logit

logit(πijk) = α+ βG
i + βE

j + βP
k + βEP

jk

is the (GEP ,MEP ,GM) log-linear model,

µijkl = λ+ λG
i + λE

j + λP
k + λGE

ij + λGP
ik + λEP

jk + λGEP
ijk

+λM
l + λGM

il + λEM
jl + λPM

kl + λMEP
ljk

When odds are computed for marital status using a log-linear model with
λGEP
ijk , all terms associated with this association and lower order terms

drop out; that is,

λ, λG
i , λ

E
j , λ

P
k , λ

GE
ij , λGP

ik , λEP
jk , λGEP

ijk
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The log-linear equivalent to (G ,EP) logit

The log-linear model (GEP ,MEP ,GM) will have the exact same df and
fit statistics as the (EP ,G ) logit model.

The estimated parameters of the logit model are equal to differences of
estimated log-linear model parameters.
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The log-linear/logit equivalents

The logit models that we fit to these data and corresponding loglinear models:

Logit Loglinear
Model Model df G 2 p
E,G,P EGP,ME,MG,MP 4 13.63 .001
GP,E EGP,MGP,ME 3 13.00 < .001
EG,P EGP,MEG,MP 3 10.75 .010
EP,G EGP,MEP,MG 3 .70 .873
EG,GP EGP,MEG,MGP 2 10.33 < .001
EP,GP EGP,MEP,MGP 2 .44 .803
EG,EP EGP,MEG,MEP 2 .29 .865
EG,EP,GP EGP,MEG,MEP,MGP 1 .15 .700
EGP EGPM 0 0.00 1.00
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Strategies in (Log-linear) Model Selection

First, when to use logit models and when to use log-linear models.

When one variable is a response variable and the rest are explanatory
variables, you can use either logit models or log-linear models; however, the
logit models are easier (better) to use.

The logit models can be fit directly and are advantageous in this situation in
that the logit model is simpler; that is, the logit model formulations have
fewer parameters than the equivalent log-linear model.

If the response variable has more than 2 levels, you can use a multicategory
logit model (later lecture).

If you use log-linear models, the highest–way associations among the
explanatory variables should be included in all models.

Whether you use logit or log-linear formulations, the results will be the same
regardless of which formulation you use.
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Two or Model Response Variables

. . . Then the log-linear model should be used.

Log-linear models are more general than logit models.

In the Marital status × Gender × EMS ×PMS example, with the
log-linear models we can examine not only how marital status is related to
EMS, PMS and gender, but we can also examine associations between (for
example) gender and EMS or PMS.

There classes are multivariate logit models:

“Standard” type (see McCullah & Nelder)

IRT models are multivariate logit models.

Other kinds (see Anderson & Böckenholt, 2000; Anderson & Yu,
2007).
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Model selection strategies with Log-linear models

The more variables, the more possible models that exist.

We’ll talk about strategies for more of an exploratory study here and later we’ll
talk more specifically about strategies for hypothesis/substantive theory guided
studies (i.e., association graphs).

1 Determine whether some variables are responses and others are explanatory
variables.

Terms for associations among the explanatory variables should always
be included in the model.
Focus your model search on models that relate the responses to
explanatory variables.

2 If a margin is fixed by design, then a term corresponding to that margin
should always be included in the log-linear model (to ensure that the
marginal fitted values from the model equal to observed margin). This
reduces the set of models that need to be considered.
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Model selection strategies with Log-linear models

4. Try to determine the level of complexity that is necessary by fitting
models with

marginal/main effects only.

all 2–way associations.

all 3–way associations.
...

all highest–way associations.
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Model selection strategies with Log-linear models

You can use a backward elimination strategy (analogous to one we
discussed for logit models) or a stepwise procedure (but don’t use
computer algorithms for doing this).

Example of backward elimination and as promised how it was decided that
(EGP ,GP) was a good log-linear model for the EMS × PMS × Gender ×
Marital Status data.. . .
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Backward Elimination

Stage Model G 2 df Best Model

Initial (EMP,EGM,EGP,GMP) 0.15 1
1 (EMP,EGM,GMP) 0.19 2 ∗

(EMP,EGM,EGP) 0.29 2
(EMP.EGP,GMP) 0.44 2
(EGM,EGP,GMP) 10.33 2

2 (GP,EMP,EGM) 0.37 3 ∗
(EG,EMP,GMP) 0.46 3
(EP,EGM,GMP) 10.47 3

3 (EG.GM,GP,EMP) 0.76 4 ∗
(EP,GP,MP,EGM) 10.80 4
(EMP,EGM) 67.72 4

4 (GM,GP,EMP) 5.21 5 ∗
(EG,GP,EMP) 5.25 5
(EG,GM,GP,EM,EP,MP) 13.63 5
(EG,GM,EMP) 70.10 5

5 (GP,EMP) 8.15 6 ∗
(GM,GP,EM,EP,MP) 18.13 6
(GM,EMP) 83.38 6

6 (GP,EM,EP,MP) 21.07 7 ∗
(G,EMP) 83.41 7

(from Agresti, 1990).
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Why Stepwise is Bad

See Flom, R.L. & Cassell, D.L. (2009). Stopping stepwise: Why stepwise
and similar selections methods are bad, and what you should use.
Proceedsing of NESUG.
http://www.nesug.org/proceedings/nesug07/sa/sa07.pdf.

For normal linear regression (mostly due to Harrell, 2001) but also apply to
GLMS:

R2 are biased.
Sampling distributions of F and χ2 test statistics aren’t what you
would expect.
Standard errors of parameters are too small.
p values are too small.
Parameter estimates are biased high in absolute value.
Collinearity problems are exacerbated.
Discourages thinking.
Many not get the best model.
Better alternatives: LASSO, LARS, model averaging,
Ridge-Regression, and Elastic Nets.
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LASSO

Least Absolute Shrinkage and Selection Operator.
A constrained regression that finds the βks that solves:

min
βk∈R





1

2n

n
∑

i=1

(

yi −

p
∑

k=0

βkxki

)2

+ tP(β)





where

t is the “tuning” parameter.

P(β) is the penalty

P(β) = ||β||ℓ1 =

p
∑

k=1

|βk |

Shrinks parameters toward 0; ideal when many βk s are close to 0.

Works as long as correlations between predictors are not too large.

Breaks down when all predictors are equal.
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Ridge Regression

Finds the βks that solves:

min
βk∈R





1

2n

n
∑

i=1

(

yi −

p
∑

k=0

βkxki

)2

+ tP(β)





t is the “tuning” parameter.

P(β) is the penalty

P(β) =
1

2
||β||2ℓ2 =

p
∑

k=1

1

2
β2
k .

Shrinks the βks toward each other so is ideal when many predictors have
non-zero values.

Works well when predictors are correlated.

Extreme case when all are equal (i.e., = 1/p), any single predictor is as good
as another.
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Elastic Net

Elastic net is a compromise between ridge regression and lasso.
It finds the βks that solve:

min
βk∈R

[

1

2n

n
∑

i=1

(yi −

p
∑

k=0

βkxki )
2 + tPα(β)

]

where

Pα(β) is the elastic-net penalty

Pα(β) = (1− α)
1

2
||β||2ℓ2 + α||β||ℓ1 =

p
∑

k=1

[

(1− α)
1

2
β2
k + α|βk |

]

“Ridge regression” −→ α = 0 so Pα(β) =
∑p

k=1
1
2β

2
k

“lasso” −→ α = 1 so Pα(β) = |βk |

If α is close to 1, it performs like LASSO but without problems caused by
extreme correlations.
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GLM and Regularized Regressions

The same logic is used for GLMs, except rather than minmized least
squares, we maximize the penalized likelihood.

SAS PROC GLIMSELECT for normal regression. Ad hoc method
1 Transform data to approximate normality
2 Use GLIMSELECT.

SAS PROC HPGENMOD is designed for generalized linear models;
however, the lasso doesn’t seem to be working on my version of SAS.
There is a suite of HP (high performance PROCS which use multiple
cores on your computer).

R there are multiple options, but glmnet package probably your best
option
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Penalized Regression for GLMMs

Friedman, J., Hastie, T, & Tibshirani, R. (2010). Regularization
Paths for Generalized Linear Models via Coordinate Descent. Journal
of Statistical Software, 33.

Friedman, J., Hastie, T, Simon, N, & Tibshirani, R. (2015) Package
‘glimnet’.

Next: strategies to use when guided more by theory.
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