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Introduction to GLMs for binary data
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Linear model for π.

Modeling Relationship between π(x) and x.

Logistic regression.

Probit models.

Trivia

Graphing: jitter and loews
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The Problem

Many variables have only 2 possible outcomes.
Recall: Bernoulli random variables

Y = 0, 1.
π is the probability of Y = 1.
E(Y ) = µ = π.
Var(Y ) = µ(1 − µ) = π(1− π).

When we have n independent trials and take the sum of Y ’s, we have
a Binomial distribution with

mean = nπ and variance = nπ(1− π).

We are typically interested in π.

We will consider models for π, which can vary according to some the
values of an explanatory variable(s) (i.e., x1, . . . , xk).

To emphasis that π changes with x’s, we write π(x)
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Example: High School & Beyond

Data from seniors (N=600).

Consider whether students attend an academic high school program
type of a non-academic program type (Y ).

We would like to know whether the probability of attending an
academic program π(x) is related to achievement (x).

Scores on 5 standardized achievement tests are available (Reading,
Writing, Math, Science, and Civics), so we’ll just take the sum as a
measure of achievement (x).
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Graph of Data (“jittered”)
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Data with Smooth Curve
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Fitted Loess Curve
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Linear Model for π

One way to model π(x) is to use a linear model:

π(x) = α+ βx

This is a “Linear Probability Model” — probability changes linearly
with achievement (x).

β represents how much larger (smaller) the probability of attending
an academic high school program for a unit change in achievement.

GLM components of linear probability model:

Random — Y is attending academic program and has a Binomial
distribution.
Systematic — X is the sum of achievement test scores.
Link — Identity.
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HSB Data

Of the 600 students, there are 490 different values of x, so if we compute
observed proportions for each of the observed values of x, many would be
either 0 or 1 (i.e., y = 0, 1).

To get a look at the relationship, we can group the data
(i.e., collapse x into some number of categories).

Sum of Five Achievement Test Scores
162– 201– 226– 251– 276– 301– 326–
200 225 250 275 300 325 350

no (0) 39 68 67 62 37 16 3 ← Count
82.98 79.07 63.21 44.60 33.04 20.25 9.68 ← Percent

yes (1) 8 18 39 77 75 63 28
17.02 20.93 36.79 55.40 66.96 79.75 90.32

47 86 106 139 112 79 31
Is there is relationship? Could it be linear?
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Side-By-Side Box Plots

non−academic academic

20
0

22
0

24
0

26
0

28
0

30
0

32
0

Distributions of Group Mean Achievement Scores

High School Program Type

G
ro

up
 M

ea
n 

of
 S

um
 o

f 5
 A

ch
ie

ve
m

en
t S

co
re

s

C.J. Anderson (Illinois) Introduction to GLMS for Dichotomous Data 9.1/ 56



Outline The Problem Linear Model for π Relationship π(x) & x Logistic regression Probit models SAS & R Triva

Plot of Collapsed Data
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Tests of Statistical Relationship

Statistical Tests of Independence and Linear relationship:

Statistic df Value p–value

Chi-Square 6 119.34 < .0001
Likelihood Ratio Chi-Square 6 128.50 < .0001
Mantel-Haenszel Chi-Square 1 117.17 < .0001

The scores used for the test of ordinal (linear) relationship were the mean
values of the achievement test score categories.

Note: r = .44
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Linear Probability Model for HSP

Estimated Linear Model for probability of attending an academic high
school program:

π̂(x) = α̂+ β̂x

= −.8987 + .0054x

where x is mean of sum of the 5 achievement scores.
The estimated expected values for E(Y ) (π̂) are “fitted values”.

Observed Values Linear Model
Mean Academic Non-acad. Proportion Fitted Std. Residual
188.972 8 39 0.17 0.13 1.08
212.748 18 68 0.21 0.26 -1.17
236.868 39 67 0.37 0.39 -0.47
262.806 77 62 0.55 0.53 0.61
287.342 75 37 0.67 0.66 0.17
312.080 63 16 0.80 0.80 0.01
332.713 28 3 0.90 0.91 -0.14
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Looking at fit of Linear Probability Model
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Structural Problem w/ Linear Probability Models

A linear model for π(x) can yield predicted values < 0 and/or > 1.

Example: These data are from Lee (1974; Agesti, 1990). The explanatory
variable is a “labeling index” (LI), which measures the proliferative activity
of cells after a patient receives an injection of a drug for treating cancer.
The response variable is whether the patient achieved remission.

Below are the fitted values from a linear model fit to these data:

LI Number of Cases Number of Remissions π̂
8 2 0 −.003
10 2 0 .053
12 3 0 .109
14 3 0 .164
...

...
...

...
38 3 2 .832
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Plot of LI–remission data & Fitted
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Plot of LI–remission data & Fitted

Typo somewhere. . .When I fit these data. . .

li nremit ncases LinFit
8 0 2 .00003
10 0 2 .05339
12 0 3 .10676
14 0 3 .16012
16 0 3 .21349
18 1 1 .26685
20 2 3 .32021
22 1 2 .37358
24 0 1 .42694
26 1 1 .48031
28 1 1 .53367
32 0 1 .64040
34 1 1 .69376
38 2 3 .80049

C.J. Anderson (Illinois) Introduction to GLMS for Dichotomous Data 16.1/ 56



Outline The Problem Linear Model for π Relationship π(x) & x Logistic regression Probit models SAS & R Triva

Linear Probability Model is a GLM

Linear probability model for binary data is not an ordinary simple linear
regression problem.

The variance of the dichotomous responses Y for each subject
depends on x.

The variance is not constant across values of the explanatory variable,
but rather it equals

var(Y ) = π(x)(1− π(x))n

Since the variance is not constant, maximum likelihood estimators of
the model parameters have smaller standard errors than least squares
estimators.
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Linear Probability Model is a GLM

Example: Cancer remission data

MLE OLS
Parameter Estimate Std Error Estimate Std Error

Intercept, α -0.2134 0.2768 -0.1613 0.2790
Slope, β 0.0267 0.0104 0.0268 0.0120
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Modeling Relationship between π(x) and x

First Property a curve should have

A fixed change in x should have a smaller effect when π is close to 0 or 1
than when it is closer to the middle of the range for π.

Generally, when π(x) is close to 0 or 1, a fixed change in x has less of an
effect than when π(x) is closer to the middle of it’s range.

Example: Probability of getting a moderately difficult item correct as a
function of total number of items correct (without the item).

g(P (item correct)) = α+ βx where x is rest-score.

On 100 item test, we would would expect a larger increase in P (item
correct) when x goes from 50 to 60 than when when x goes from 89 to
99.
We would also expect to see a smaller decrease in
P (item correct) when x goes from 10 to 0 than when x goes from 60
to 50.
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Second Property for Curve

The relationship between π(x) and x is usually monotonic such that

π(x) continuously increases as x increases
or

π(x) continuously decreases as x increases.

Considering these two properties, an S-shaped curve:
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Cumulative Distribution Functions (cdf)

Suppose that

Z is a random variable
z is a possible value of Z (e.g., −∞ < z <∞)

A cumulative distribution function for Z is defined as

F (z) = P (Z ≤ z) −∞ < z <∞

Some examples for discrete Z:
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Symmetric pdf’s (bell shaped)

that have symmetric probability density functions (i.e., “bell-shaped”
ones).

Two distributions that we will discuss are

Logistic
Normal
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Logistic regression

The cumulative logistic distribution function is

F (x) = P (X ≤ x) =
exp((x− µ)/τ)

1 + exp((x− µ)/τ)

where

µ is a mean (location)
τ is a scaling parameter
−∞ < x <∞

Using the logistic cdf, the logistic regression function is

log

(

π(x)

1− π(x)

)

= log

(

(exp(x− µ)τ)/(1 + exp((x− µ)/τ))

1/(1 + exp((x− µ)/τ))

)

= (x− µ)/τ

= −µ/τ + x/τ

= α+ βx
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Logistic regression model as a GLM

log

(

π(x)

1− π(x)

)

= α+ βx

Random component: Binomial

Link Function: logit
“logit(π)” = log(π/(1− π)).
“logistic regression model ” ≡ “logit model”
The logit is the natural parameter of the Binomial distribution;
therefore, the logit link is the canonical link function.
0 ≤ π ≤ 1, but −∞ < logit(π) <∞.

Systematic component: A linear predictor such as

α+ βx

which can be any Real number and yield a π within (0, 1).
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log
(

π(x)
1−π(x)

)

= α + βx

Interpretation of β:
β determines the rate that π(x) changes with changes in x.

If β > 0 then π(x) increases as x increases.

α = 1 and β = 2:

Note: ( ) ( + β )/(1 + exp( + β ))
C.J. Anderson (Illinois) Introduction to GLMS for Dichotomous Data 25.1/ 56
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log
(

π(x)
1−π(x)

)

= 1− 2x β

If β < 0 then π(x) decreases as x increases.
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log
(

π(x)
1−π(x)

)

= 1 + 0x

β = 0 means no relationship between Y and x:
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Changing Value of β

Larger value of β leads to a steeper curve:
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Changing Value of α

Larger value of α leads to a vertical shift for the logit, but a horizontal
shift for the π:
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When α = 0 with different β’s

The logits intersect at x = 0 with logit = 0 and the probabilities intersect
at x = 0 with π(0) = .5:
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HSB and Academic Programs (grouped data)

Y = 1 for academic program and x = mean of total achievement test
scores:

Estimated equation:

logit(π̂(x)) = −6.741 + .026x

β̂ = .026 — as achievement scores go up, the probability that a
student went to an academic high school program increases.
Is this a “large” value?

Statistically? The estimated standard error of β̂ is .0026, so
.026± 2(.0026) −→ (.021, .031).

Important? This is not a subjective judgement.
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Fitted and Observed Values (grouped data)

The fitted values π̂(x) from logistic regression model:
Fitted Values

Achievement Mean Observed (probabilities)
Category Achieve proportion Linear Logistic
162–200 188.97 .17 .13 .14
201–225 212.75 .21 .26 .24
226–250 236.87 .37 .39 .37
251–275 262.81 .55 .53 .53
276–300 287.34 .67 .66 .68
301–325 312.08 .80 .80 .81
326–350 332.71 .90 .91 .88
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Plot of Fitted and Observed Values
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Comparison with Linear Prob Model
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Probit models (Normal cdf)

Rather than use the logistic cdf, we can use the (standard) Normal
distribution.

When F (z) is the normal cdf, the link is referred to as “probit”.
The probit link is defined as

probit(π) = F−1(X ≤ x)

For example,

probit(.025) = −1.96

probit(.050) = −1.64

probit(.500) = 0.00

probit(.950) = 1.64

probit(.975) = 1.96
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Probit model as GLM

The probit model for binary data:

probit(π(x)) = α+ βx

This is a generalized linear model with

Random component: Binomial distribution.

Systematic component: linear function of explanatory variable(s).

Link function: probit.
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Example of Probit model: HSB

probit(π̂(x)) = −4.0828 + 0.0158x

As achievement scores go up, so does the probability of having
attended an academic program.

Estimated standard error of β̂ is 0.0015, so β̂ = .0158 “large” in the
sense that .0158 ± 2(.0015) −→ (0.013, 0.019).

Fitted values are extremely close to those from the logit model.

Category x p Linear Logistic Probit
162–200 188.97 .17 .13 .14 .14
201–225 212.75 .21 .26 .24 .24
226–250 236.87 .37 .39 .37 .37
251–275 262.81 .55 .53 .53 .53
276–300 287.34 .67 .66 .68 .68
301–325 312.08 .80 .80 .81 .81
326–350 332.71 .90 .91 .88 .88
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Observed and Fitted Values: HSB

200 220 240 260 280 300 320

0.
2

0.
4

0.
6

0.
8

Observed and Fitted Proportion in Academic

Group Mean of sum of 5 Achievement Tests

P
ro

po
rt

io
n 

in
 A

ca
de

m
ic

 P
ro

gr
am

Linear
Logit
Probit

C.J. Anderson (Illinois) Introduction to GLMS for Dichotomous Data 38.1/ 56



Outline The Problem Linear Model for π Relationship π(x) & x Logistic regression Probit models SAS & R Triva

Logit & Probit Models

The logistic regression model

logit(π(x)) = α+ βx

and the probit model
probit(π(x)) = α+ βx

often yield very similar fitted values.

It is extremely rare for one of these models to fit substantially better
(worse) than the other.

The Probit model yields curves for π(x) that look like normal cdf with
mean µ = −α/β and standard deviation σ = 1/|β|.
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Logit & Probit Models (continued)

For the HSB data, the probit model corresponds to a normal cdf with
mean = −(−4.0828)/.0158 = 258.41 and standard deviation
= 1/.0158 = 63.29.

For the probit model, the x that yields π̂(x) = .5 is the mean; that is,

π̂(258.41) = .5

and for the logit model,

π̂(258.41) = logit−1(−6.741 + .0262(258.41))

=
1

1 + exp−(−6.741+.0262(258.41))

= .5
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SAS/PROC GENMOD

DATA hsb;
INPUT achieve attend ncase;
LABEL achieve=’Mean Achievement for Category’
attend=’Number who attend academic’
ncase=’Number who in Achievement Category’;

DATALINES;

Then to fit a linear model for binary data,

PROC GENMOD ORDER=DATA DATA=hsb;
MODEL attend/ncase = achieve / LINK=identity

DIST=BINOMIAL ;
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SAS/PROC GENMOD

For a logit model for binary data,

PROC GENMOD ORDER=DATA DATA=hsb;
MODEL attend/ncase = achieve / LINK=logit

DIST=BINOMIAL ;

For a probit model for binary data,

PROC GENMOD ORDER=DATA DATA=hsb;
MODEL attend/ncase = achieve / LINK=probit

DIST=BINOMIAL ;
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R glm

Note that parameter estimates differ slightly when dealing with groups hsb
data and se’s are quite different. Not apparent differences when data
weren’t grouped.

See R script of data input, basic statistics, and graphing

# Fit to uncollapsed data

linear.all ← glm(program ∼ achieve, data=hsb,

family=binomial(link="identity"))

summary(linear.all)

# Fit to collapsed data

hsb$p.acd ← hsb$program/hsb$ncase
linear.all ← glm(p.acd ∼ achieve, data=hsb, weights=ncase,

family=binomial(link="identity"))

summary(linear.all)C.J. Anderson (Illinois) Introduction to GLMS for Dichotomous Data 43.1/ 56
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R glm: logit

# Fit to uncollapsed data
logit.all ← glm(program ∼ achieve, data=hsb,

family=binomial(link=”logit”))
summary(logit.all)

# Fit to collapsed data
logit.all ← glm(p.acd ∼ achieve, data=hsb, weights=ncase,

family=binomial(link=”logit”))
summary(logit.all)
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R glm

The probit:

# Fit to uncollapsed data

probit.all ← glm(program ∼ achieve, data=hsb,

family=binomial(link="probit"))

summary(probit.all)

# Fit to collapsed data

probit.all ← glm(p.acd ∼ achieve, data=hsb, weights=ncase

family=binomial(link="probit"))

summary(probit.all)
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Example # 2: Cancer remission data

Example: These data are from Lee (1974; Agesti, 1990). The explanatory
variable is a “labeling index” (LI), which measures the proliferative activity
of cells after a patient receives an injection of a drug for treating cancer.
The response variable is whether the patient achieved remission.

Linear probability model: Y = −0.2134 + 0.0267(LI)

WARNING: The relative Hessian convergence criterion of
0.1210654506 is greater than the limit of 0.0001. The convergence is
questionable.
WARNING: The procedure is continuing but the validity of the model
fit is questionable.

Logit model: logit(Y ) = −3.7771 + 0.1449(LI)

Probit model: probit(Y ) = −2.3178 + 0.0878(LI)
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Example # 2: R Cancer remission data

# Linear probability model

linear.model ← glm(p.remit ∼ li, data=li, weights=ncases,

family=binomial("identity"))

summary(linear.model)

Error: no valid set of coefficients has been found: please supply starting
values
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Example # 2: R Cancer remission data

# Logit probability model

logit.model ← glm( ∼ li, data=li, weights=ncases,

family=binomial("logit"))

summary(logit.model)

# logit model with quadratic term

li$lisq ← li$li**2
new ← glm(p.remit∼ li + lisq, data=li, weights=ncases,

family=binomial("logit"))

summary(new)

# Probit probability model

probit.model ←glm(p.remit ∼ li, data=li, weights=ncases,

family=binomial("probit"))

summary(probit.model)
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Loess and Jitter

For code, see programs on web-site
In R:

plot(hsb$achieve,jitter(hsb$program,0.1) )

# fit loess to data

p ← li$nremit/li$ncases
lw1 ← loess(p ∼ li$li)

In SAS:

PROC LOESS

jitter option to scatter in sgplot (see HSB code for simple example)
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What is LOESS?

From
https://www.statsdirect.com/help/nonparametric methods/loess.htm:
“LOESS Curve Fitting (Local Polynomial Regression). This is a method
for fitting a smooth curve between two variables, or fitting a smooth
surface between an outcome and up to four predictor variables. . . This is a
nonparametric method because the linearity assumptions of conventional
regression methods have been relaxed. Instead of estimating parameters
like m and c in y = mx+ c, a nonparametric regression focuses on the
fitted curve. The fitted points and their standard errors represent are
estimated with respect to the whole curve rather than a particular
estimate. So, the overall uncertainty is measured as how well the
estimated curve fits the population curve.”
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Comparison of Model Fitted Values
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Comparison of Model Fitted Values & Data
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R: Comparison of Model Fitted Values & Data
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Binary Data Modeling Trivia

Probit Model.

First person known to have suggested using the inverse of the normal
cdf to transform probabilities was

Fechner (1886).

The probit model was popularized by Gaddum (1933) and Bliss (1934,
1935) in toxicological experiments.
The term “probit” was introduced by

Bliss — who used a normal cdf with µ = 5 and σ = 1.

Logit Model.. . .
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Binary Data Modeling Trivia

Logit Model.. . .

The term “logit” was proposed by Berkson (1944) because
of the similarity between the logit and probit models

Fisher & Yates (1938) first suggested a logit link function for binary
data.

Both the logit and probit model were derived from a “threshold
model” where there is an underlying psychological quantity such that

y =

{

1 if ψ ≥ ξ
0 if ψ < ξ
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To be covered Later

When we cover chapter 4 on logistic regression, we’ll talk about (among
other things)

More on the interpretation of logit/logistic regression model.

Assessing model fit.
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