
A Handbook of International Large-Scale
Assessment: Background, Technical Issues, and

Methods of Data Analysis

Leslie Rutwoski
Matthais von Davier

David Rutwoski





Chapter 1

Multilevel Analysis of Large-Scale Assessment
Data

Jee-Seon Kim
University of Wisconsin–Madison

Carolyn J. Anderson
University of Illinois, Urbana-Champaign

Bryan S. B. Keller
University of Wisconsin–Madison

1.1 Introduction

Large-scale assessment data often exhibit a multilevel structure as a result of either sampling proce-
dures, such as stratified sampling, or contextual factors, such as school settings where students are
nested within schools or cross-cultural settings where individuals are nested within countries. Ob-
servations within a cluster are likely to be correlated with one another and their dependency should
be accounted for in the data analysis to permit valid statistical inferences. Moreover, relationships
among variables may vary within clusters allowing for more detailed and informative study of con-
text effects and their correlates.

The notion of clustered data and related issues of dependence are not new and have been studied
for a long time. For example, the concept of a design effect was already used in 1965 by Kish as
a required adjustment to account for correlations among observations within clusters in random-
ized trials. However, major advances in multilevel analysis have been made during the past couple
of decades and more recently the methodology has became increasingly popular across disciplines
owing to increased computing power and the subsequent emergence of user-friendly software. There
now exist several software packages developed specifically for multilevel models, including HLM,
MLwiN, and SuperMix, as well as modules available for multilevel analysis in general-purpose soft-
ware packages, such as lme4 and nlme in R, MIXED, NLMIXED, and GLIMMIX in SAS, and xtreg and
GLLAMM in STATA. Other general statistical programs that enable some form of multilevel modeling
include WinBUGS, Latent Gold, and Mplus.

Although software for multilevel analysis may not be difficult to use for most researchers and
practitioners with basic computer skills and fundamental knowledge of regression, the implementa-
tion of the methodology with real data is not always straightforward due to the intrinsic complexity
of multilevel models and the complicated structures often present in multilevel data. Many national
or international datasets are also observational or quasi-experimental, have sampling weights for
primary and secondary sampling units, and/or may include missing data across levels.

This chapter demonstrates a multilevel analysis of large-scale assessment data using reading
achievement scores and related variables from the 2006 Progress in International Reading Literacy
Study (PIRLS) within the United States (Martin et al., 2007). Often a goal of research using such
data sets is to study factors that potentially impact reading literacy and related issues. Initially, we
examine descriptive statistics at each level. We then consider a multilevel model specification for
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the data, along with associated assumptions, diagnostics, and interpretation. We also address the
presence of sampling weights across levels and the need to impute missing data at different levels.

The next section explains the PIRLS2006 data used for this analysis and describes the variables
of interest. Such examinations reflect exploratory data analysis and can be conducted in various
ways, for example, by inspecting distributions and/or patterns across variables and visualizing rela-
tionships among them. This step is critical to understand the data and also to check if the planned
modeling technique appears appropriate. Subsequent sections discuss steps in applying and evalu-
ating multilevel models with large-scale data. The chapter concludes by presenting some advanced
topics and remaining methodological issues in multilevel modeling, suggesting further readings,
and cross referencing other chapters in this volume for specific topics such as nonlinear multilevel
models for discrete data, imputing multilevel missing data, and making causal inferences based on
large-scale assessment data.

1.2 The Data

1.2.1 PIRLS

PIRLS is an international comparative study of the reading literacy of young students. It focuses on
the reading achievement and reading behaviors and attitudes of fourth-grade students in the United
States and students in the equivalent of fourth grade across other participating countries. PIRLS was
first administered in 2001 and included 35 countries, but expanded to 40 countries in 2006. The
assessment includes a written test of reading comprehension and a series of questionnaires focusing
on the factors associated with the development of reading literacy. PIRLS is coordinated by the
International Association for the Evaluation of Educational Achievement.

In PIRLS, two types of reading are assumed that account for most of the reading young students
do: reading for literary experience and reading to acquire and use information. In the assessment,
narrative fiction is used to assess students’ abilities to read for literary experience, while a variety
of informational texts are used to assess students’ abilities to acquire and use information while
reading. The PIRLS assessment contains an equal proportion of texts related to each purpose.

The multilevel analysis in this chapter is illustrated using PIRLS2006 data only from the United
States. The data are from a two-stage cluster sample with sampling probability weights. In 2006, a
nationally representative sample of fourth-grade students was selected resulting in 5,190 students
from 183 schools. Schools were randomly selected first, and then one or two classrooms were ran-
domly selected within each school. Although some schools have students from two classrooms,
most schools have only one classroom in the study, and we therefore treated the data as consist-
ing of two levels: students within schools. The number of students per school ranges from 8 to 68
with an average equal to 28. Data from both the fourth grade student questionnaire and the school
questionnaire are used.

1.2.2 Plausible Value Outcomes

In PIRLS2006, students were asked to engage in a full repertoire of reading skills and strategies,
including retrieving and focusing on specific ideas, making simple to more complex inferences, and
examining and evaluating text features. To provide good coverage of each skill domain, the test
items required a total of five hours and twenty minutes of testing time. However, testing time was
kept to one hour and twenty minutes for each student by clustering items in blocks and randomly
rotating the blocks of items through the nine student test booklets. As a consequence, no student
received all items but each item was answered by a randomly equivalent sample of students.

The matrix-sampling design used in PIRLS2006 solicits relatively few responses from each sam-
pled student while maintaining a wide rage of content representation when responses are aggregated
across all students. In such designs, the advantage of estimating population characteristics efficiently
comes at the cost of an inability to make precise statements about individuals. More significantly,
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the amount of uncertainty may be different for different individuals. The uncertainty associated with
individual proficiency estimates becomes too large to be ignored and a simple aggregation of indi-
vidual student scores can lead to seriously biased estimates of population characteristics (Wingersky
et al., 1987).

To address this issue, a plausible values methodology by Mislevy (1991) was implemented in the
current analysis to represent the measured reading proficiency of each student. In short, the method
uses all available data to estimate the characteristics of student populations and subpopulations and
uses multiply imputed scores, called plausible values, for individuals to account for the uncertainty.
The PIRLS2006 data consists of five plausible values representing an overall reading score for each
student. We refer to them as readingPV1 to readingPV5 in this chapter. All five plausible values
were used as outcomes in our analysis. We explain in section 1.2.6 how results from the five anal-
yses are combined. The distributions of the five plausible values are shown in Figure 1.1. The five
empirical distributions and overlapped smoothing functions suggest that the normality assumption
appears reasonable. The figure also shows that, although plausible values fluctuate within persons
(for example, five values for a subject were 525.22, 603.41, 591.00, 621.33, and 583.37), the means
and standard deviations of the five distributions across persons are very close to each other, as well
as their general distributional form, as one would expect given their generation from the same dis-
tributions.

1.2.3 Predictors

Background questionnaires were administered to collect information about student home and school
experiences in learning to read. A student questionnaire addressed student attitudes towards reading
and their reading habits. In addition, questionnaires were given to students’ teachers and school prin-
cipals to gather information about school experiences in developing reading literacy. In countries
other than the United States, a parent questionnaire was also administered.

Along with the outcome variables, a number of explanatory variables were selected from both
the student and school levels, as they are hypothesized to affect or be related to reading perfor-
mance. Basic summary statistics are shown in Table 1.2.3. In the table, the means and standard
deviations for subgroups (e.g., female vs. male) were calculated for readingPV1 to readingPV5

separately and then averaged. The differences of the statistics are not reported here as the outcome
distributions are very similar across plausible values, as shown in Figure 1.1, and the group means
and standard deviations were also stable across the five outcome variables. For example, the means
of readingPV1 to readingPV5 for females (n = 2,582) were 541.42, 541.99, 541.54, 541.29, and
542.45. If the descriptive statistics were substantially different across the plausible values, we would
have reported the variability across the plausible values.

1.2.4 Exploratory Data Analysis

Exploratory data analysis is an important part of data analysis. In this section we describe and
illustrate various graphical methods that are especially useful for multilevel analysis. The particular
figures drawn depend on the nature of the predictor variables.

We start by examining the relationship between reading scores and possible micro-level predic-
tor variables. If predictors are numerical (continuous), a plot of student data where each cell of the
panel contains a plot of the response variable by a predictor variable can be very informative. Linear
(quadratic, cubic or spline) regression lines fit to each school’s data can be overlaid in each cell of
the panel1. Features to look for in such plots are the nature of the relationship between the predictor
and response (e.g., Does a linear relationship seem reasonable? Is the relationship positive, negative
or non-existent? Is the relationship basically the same for all schools?), the variability of the data for
each school, and anything anomalous (e.g., Is a predictor that was thought to be numerical actually

1If there are a large number of clusters, a random sample of groups can be used.
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Figure 1.1 Histogram plots with sample means and standard deviations for the five reading plausible value
scores.
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discrete? Is there a school that is very different from all the others? Are there outliers in the response
or predictor variable?). Information about similarities and differences between schools can often be
better seen by overlaying the school regression lines in a single figure.

In our PIRLS example, all the predictors are discrete; therefore, we did not plot individual
student data separately for each school. In Figure 1.2, we plot the school mean reading scores for
each level of a predictor variable and connect the means within school by lines. The same pattern
is found for each of the five plausible reading scores; therefore, we only present the figure for one
of the plausible values, readingPV1. With the exception of enjoyreading, these lines correspond
to straight lines. What is apparent in the figure is that there is considerable vertical spread between
schools and this suggests that school regressions will have different intercepts. Also noticeable is
the fact that some predictors have schools with vastly different slopes. For example, the slopes
for bornUS are both negative and positive, and they show great variability between schools. Also
important to note is that most students were born in the US. The regressions for bornUS are likely
to be unstable means for because not born in us are based on a small amount of data. The slopes
for hours per day playing video games (i.e., compgames5H) also show considerable variability. The
lines for gender are basically flat, which suggests that gender may not be a good predictor of reading
scores. Since the means for both levels (more or less than 5 hours per day) are based on a relatively
large number of students, the model fit to the data may require different slopes for compgames5H
for each school.

Another feature of the data that can be seen in Figure 1.2 is that all the predictors should be
treated as discrete even if they have three or more categories. For example, the relationships be-
tween reading scores and mombornUS, dadbornUS, and enjoyreading are not linear. Also from
Figure 1.2, we can get a sense of the general direction of the relationship. School mean reading
scores tend to be higher for girls, large values of enjoyment of reading, more books in the home,
fewer hours playing video games, fewer hours watching TV, higher values for students born in the
US, and higher values when students’ mothers and fathers are born in the US. To see the direction
of the relationship more clearly, in Figure 1.3, the means taken over all schools and plausible values
are plotted by each predictor variable, also shown in Table 1.2.3. Although the data are clustered,
these means are unbiased estimates of the effects of each predictor on the response (Diggle et al.,
1994; Verbeke and Molenberghs, 2000). In the models, the (fixed) regression parameters that are the
same for all schools (and the average school) are expected to be in the same direction as the means
illustrated in this figure.

The first two figures focused only on effects at the level of the student. In the next figure we
illustrate how effects at the school level can be examined. In Figure 1.4, the mean reading scores
are plotted for boys and girls at each level of econDisadv2. The lines for econDisadv are parallel
and suggest there is no interaction between gender and econDisadv; however, the vertical spread
between the level of economically disadvantaged students at a school suggests that this predictor
may help account for differences between school intercepts. The schools with the lowest percentage
of economically disadvantaged families (top curve, < 10%) have the highest mean reading scores,
followed by levels of 11−25% and 26−50%, while the lowest reading scores are for schools where
> 50% of families are disadvantaged.

As a final form of exploratory data analysis, we fit normal least squares regression models with
only the student (micro) level predictor variables to each school’s data. Since the intercept and
regression coefficients are school specific, these regressions represent the best possible model fit for
the data where goodness-of-fit can be measured by multiple R2. Since schools with smaller numbers
of students will tend to be fit better by the model than schools with larger numbers of students, the
multiple R2s for each school are plotted against school sample size. For our PIRLS data, these are

2If a school level predictor is continuous, a figure similar to Figure 1.4 can be created by discretizing the predictor and
computing means for the artificial levels. However, when it comes time to model the data, the predictor should be treated as
a continuous variable.
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plotted in Figure 1.5. Most of the schools’ multiple R2s are between .30 and .90 indicating that this
set of student level predictors could lead to a good Level 1 or student-specific model for the data.

As a global summary statistic, we also computed meta-R2 as

meta-R2 =
∑

M
j ( SSTOT j −SSE j)

∑
M
j=1 SSTOT j

,

where SSTOT j and SSE j are the sum of squares and error, respectively, for school j (Verbeke and
Molenberghs, 2000). Meta-R2 measures the proportion of total within-school variability that can be
explained by linear regression. For our PIRLS data, meta-R2 equals .49. Both the R2 and meta-R2

can be used to compare plausible, student-specific models for the data.
Other exploratory analyses are possible that focus on the random aspects of the data and measure

how well alternative models could fit data (e.g., see Diggle et al., 1994; Verbeke and Molenberghs,
2000); however, a better understanding of multilevel modeling is required to explain such analyses.
Therefore, we forgo these in favor of presenting more about the basic models and their properties.
While conducting our EDA, we noticed that there are missing values on both student and school
predictors. In the next section we discuss how we dealt with missing data.

1.2.5 Missing Data

Although the percentages of missingness are not alarmingly high for many variables in PIRLS,
most variables have missing values, as is often the case in large-scale assessment data. The patterns
and percentages of missingness at the student and school levels are summarized in Table 1.2.5 and
Table 1.2.5. Each row represents a pattern of missing data where an “X” indicates that the column
variable does not have missing values and “.” indicates that the variable has missing values. The
last two columns give the frequency and percentages with which each of the row patterns occur.
The variables are ordered from those with the least missingness to those with the most missingness.
For example, female has the least missingness at three missing values (0.06%) while comgames5H
has the most missingness with 265 missing values (5.11%) at the student level. Among the 5,190
students and 183 schools, 4,570 (88.05%) students and 173 (94.54%) schools have no missing
values, respectively. All of the variables in Table 1.2.3 as well as the five reading plausible values
were used for imputing missing predictor values.
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Table 1.1 Information about explanatory variables. Values are based on non-missing data. Mean and standard
deviation are based on the averages across the reading plausible values

Variable Levels Percentage Mean Std dev
Level-1 Variables (N = 5,190 Students)

female

{
Female
Male

49.78% 541.74
531.51

70.59
76.46

enjoyreading


Disagree a lot
Disagree a little
Agree a little
Agree a lot

11.50%
9.72%

24.95%
53.83%

504.42
516.51
536.77
549.30

67.86
68.79
68.53
74.26

bornUS

{
Student was born in US
Student was not born in US

92.12% 540.71
507.24

72.29
75.04

mombornUS

 Mother born in US
Mother not born in US
Don’t know

67.57%
21.55%
10.88%

546.42
523.46
515.62

71.65
72.92
72.54

dadbornUS

 Father born in US
Father not born in US
Don’t know

62.67%
21.82%
15.51%

547.84
524.17
518.24

71.41
72.59
73.14

home25books

{
25 or more books at home
Less than 25 books at home

64.50% 552.01
517.22

72.09
67.46

watchTV5H

{
Watch TV 5+ hrs on normal school day
Watch TV <5 hrs on normal school day

28.37% 513.14
549.51

70.16
71.67

comgames5H

{
Play computer/video games 5+ hrs/day
Play computer/video games <5 hrs/day

30.29% 513.12
550.79

69.39
71.49

Level-2 Variables (M = 183 Schools)

econDisadv


>50% econonimcally disadvantaged
26-50% economically disadvantaged
11-25% economically disadvantaged
<10% economically disadvantaged

41.67%
23.33%
10.00%
25.00%

511.99
542.29
557.84
567.05

71.88
72.07
68.39
65.61

schoolLIB

{
School has a library
School does not have library

98.29% 537.89
504.45

73.60
56.65
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Figure 1.2 Panel plot of school mean reading scores plotted by each predictor variable where lines are con-
necting school means.
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Figure 1.3: Panel plot of marginal mean reading scores by each predictor variable.
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Table 1.3: Missing school-level data. “X” indicates a non-missing value and “.” indicates a missing value.

Pattern econDisadvN schoolLIB Frequency Percentage
1 X X 173 94.54
2 . X 2 1.09
3 X . 7 3.83
4 . . 1 0.55

Frequency 3 8 183
Percentage 1.64 4.37

1.2.6 Multiple Imputation

Missingness is a major problem in most large-scale datasets and the clustered structure of multilevel
data adds another layer of complexity to the treatment of missing observations. Simply removing
students or whole schools due to missing data is not only a waste of information, but also can
result in biased parameter estimates (Allison, 2002; Schafer, 1997; Van Buuren, 2011, 2012; Enders,
2010). The program Mplus (Muthén and Muthén, 2010) can fit models using maximum likelihood
estimation (MLE) with missing values on the response variable, but MLE cannot handle missing
data for the predictor or explanatory variables. A multiple imputation approach can impute missing
response and predictor variables. The missing data mechanism we assume to be missing at random
(MAR), which implies that conditional on the observed data, the missing values are independent
of the unobserved data or, in other words, the missingness itself contains no inforamtion about the
unobserved values that is not also contained in the observed data (Rubin, 1976; Snijders and Bosker,
2012).

Plausible values are already provided for PIRLS2006 and thus do not imply missing values, but
we have missing data at the both student and school levels with discrete predictors. Relatively little
research has been conducted regarding missing clustered data. Most of the work pertains to either
normally distributed variables (e.g., Chapter ?? of this book, Shin and Raudenbush, 2007, 2010)
or uses simple cases without missing level-2 variables (Van Buuren, 2011, 2012). Neither of these
two solutions work for our data. Some proposals have been put forth that include dummy variables
for each cluster (Reiter et al., 2006); however, this presupposes that clusters only differ in terms of
their intercepts. In our case, we do not want to make this assumption and due the large number of
clusters, this method is not pursued here. Also rare are proposals for incorporating sampling weights
into the imputation model for missing data. An exception is Amer (2009), but this only deals with
two clusters.

There are two general approaches to impute multivariate missing data: joint modeling (JM) and
fully conditional specification (FCS) (Van Buuren, 2012). JM imputes missing values in multiple
variables simultaneously based on the assumption that the data can be described by a multivariate
distribution. The multivariate normal distribution is the mostly widely applied, although any multi-
variate distribution can be assumed in theory. On the other hand, FCS imputes data on a variable-
by-variable basis. FCS requires requires an imputation model for each incomplete variable as the
outcome, and creates imputations per variable in an iterative fashion. As FCS directly specifies the
conditional distributions from which draws should be made, the method does not require specifi-
cation of a multivariate model for multiple variables. An overview of similarities and differences
between JM and FCS is provided in ?.

For missing values among binary and ordinal predictors that do not likely follow a multivariate
normal distribution, we used FCS as implemented in the package mice in R (Van Buuren, 2011).
We used two datasets for imputation; the school data and student data. The student data (N = 5,190)
consist of all level-1 and level-2 variables where the level-2 values are constant for students within
the same schools. The school data (M = 183) consists of the same number of variables, where the
means of the student-level variables are used as the corresponding school-level variables. Although
we acknowledge that our approach of imputing missing values at each level separately is not opti-
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mal, imputing missing values while preserving the multilevel structure is not simple; more complex
approaches that may be superior are described in Swoboda (2011) and Kim and Swoboda (pril).
However, we at least use information across levels to improve the quality of the multiple imputa-
tion. For example, the five plausible values at the student level are used to impute the missing values
of the school-level predictors, and the school-level predictors are used to impute missing values of
the student-level predictors.

There appears to be no consensus on the appropriate number of imputed datasets (Allison, 2002;
Schafer, 1997; Van Buuren, 2012; Enders, 2010), and the answer may depend on the missing pat-
terns and frequencies. We imputed five datasets for the predictors and crossed them with the five
plausible value outcomes, resulting in 25 datasets for further analysis. The different models were all
fit to each of the 25 imputed datasets, and we thus obtained 25 different outcomes for each model.

To synthesize results from the multiple datasets for each model, we used Little and Rubin’s
procedures for combining multiple results, which appears to be the generally accepted standard
in the imputation literature (Little and Rubin, 2002; Snijders and Bosker, 2012). The Little and
Rubin procedure accounts for two sources of imprecision in the parameter estimates: the within-
dataset uncertainty and the imputation uncertainty. The within dataset uncertainty is accounted for
by the standard error of estimate and the imputation uncertainty is accounted for by the variance of
the estimates across datasets. This procedure can be presented as follows: let θ be a parameter of
interest. The average estimate is obtained across Mimp imputed datasets:

θ̄ =
1

Mimp

Mimp

∑
m=1

θ̂m, (1.1)

The within dataset uncertainty is the average of the squared standard errors:

W =
1

Mimp

Mimp

∑
m=1

SE(θ̂m)2,

and the between imputation uncertainty is the variance of the estimate across the multiple datasets:

B =
1

Mimp −1

Mimp

∑
m=1

(θ̂m − θ̄ )2.

These two sources of uncertainty are used to compute the standard errors of the average estimate
by taking the square root of a weighted sum of the two sources as follows:

SE(θ̄ ) =

√
W +

(
1 +

1
Mimp

)
B. (1.2)

When we later fit multilevel models, Equations 1.1 and 1.2 are used to report results in the tables.

1.3 Multilevel Modeling

Multilevel modeling is a statistical methodology with many alternative names, including hierarchi-
cal linear modeling, mixed-modeling, random-effects modeling, nested modeling, random coeffi-
cient modeling, and variance component analysis. Not surprisingly, notation for multilevel models
varies across the literature and software used in various disciplines. While we attempt to use nota-
tion that is largely consistent with those of the other chapters in the volume, readers should expect
some differences across other resources for multilevel analysis.

Despite subtle or sometimes not-so-subtle differences in notation and terminology across disci-
plines, there are a number of core concepts that are consistent, such as intraclass correlation, fixed
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and random effects, random intercepts and random slopes (a.k.a random coefficients), centering, re-
liability of aggregated variables, within- and between-group covariability, cross-level interactions,
and slopes as outcomes models. Due to space limits, we provide a list of multilevel model textbooks
at the end of this chapter and refer readers to these books for definitions and examples of these
concepts.

1.3.1 A Presentation of the Model

A single level regression model can be generalized to a multilevel model by allowing a regression
coefficient to be random over clusters. Let the outcome variable (e.g., reading proficiency) for an
individual i in cluster (e.g., school) j be Yi j, where i = 1, . . . ,n j and j = 1, . . . ,M. The distribution of
Yi j within a cluster is assumed to be normal. The level-1 cluster-specific model can be written as:

Yi j = β0 j +
P

∑
p=1

βp jxpi j + εi j, (1.3)

where β0 j is the intercept for cluster j, βh j is the regression coefficient of cluster j for predictor
variable xpi j, p = 1, . . . ,P, and εi j is the student-level random effect or error term, usually assumed
to be normally distributed with a zero mean and an unknown variance σ2 (i.e., εi j ∼ N(0,σ2)).

While the level-1 model accounts for variability at the student level, the level-2 model describes
variability between clusters (schools in our analysis). The level-2 models are linear models for each
of the level-1 regression coefficients:

β0 j = γ00 +
Q

∑
q=1

γ0qzq j +U0 j

β1 j = γ10 +
Q

∑
q=1

γ1qzq j +U1 j (1.4)

...

βP j = γP0 +
Q

∑
q=0

γPkzq j +UP j,

where the zq j are predictors or explanatory variables that model systematic differences between
clusters, q = 1, . . . ,Q, the γp0’s are level-2 intercepts, the other γ’s are fixed regression coefficients
for level-2 predictors, and the Up j’s are unobserved random effects (residuals).

The unexplained, random, or stochastic between-cluster differences are modeled as random ef-
fects. The distributional assumption for the Up j’s in (1.4) is

UUU j =


U0 j
U1 j

...
UP j

∼ MV N




0
0
...
0

 ,


τ00 τ10 . . . τp0
τ10 τ11 . . . τp1
...

...
. . .

...
τp0 τp1 . . . τpp


 i.i.d (1.5)

where MV N stands for multivariate normal and i.i.d is for independent and identically distributed.
For short, UUU j ∼ MV N(000,TTT ) i.i.d.

Substituting the level-2 equations into the regression coefficients of the level-1 model yields a
linear mixed-effects model,

Yi j = γ00 +
P

∑
p=1

γp0xpi j +
Q

∑
q=1

γ0qzq j +
P

∑
p=1

Q

∑
q=1

(γpqzq j +Up j)xpi j +U0 j + εi j. (1.6)
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The mixed-effects model shows that γ00 is the overall intercept, the γp0’s are fixed regression
coefficients for level-1 effects, the γ0q’s are fixed regression coefficients for level-2 effects, and the
γpq’s are fixed effect regression coefficients for cross-level interaction terms. The first subscript
on γpq corresponds to the predictor in the level-1 model and the second subscript corresponds to
the predictor in the level-2 model. For example, γ32 is the regression coefficient for the interaction
between x3i j and z2 j. Random effects consist of the random intercept U0 j, random slopes Up j, and
the error term εi j.

1.3.2 The Empty Model

Whereas multilevel analysis investigates relationships between predictors and outcomes in the con-
text of hierarchical data, it is often useful to consider the empty model before entering predictors
into the model. The empty model consists of the outcome variable (e.g, reading proficiency) and
the group membership identification variable (e.g., school ID#) as the only variables in the model,
and is also known as the null model or the unconditional means model. The empty model can be
presented as:

Yi j = γ00 + U0 j + εi j. (1.7)

Equation 1.7 represents the simplest multilevel model in the two level case, and is identical to a
one-way random effects ANOVA model. In addition to the grand mean of the outcome value, γ00, the
model reflects the variability of the outcome variable as the sum of the between- and within-group
variance components:

var(Yi j) = var(U0 j) + var(εi j) = τ00 + σ
2. (1.8)

The covariance between two observations within the same cluster j is equal to the variance of
U0 j, and can be viewed as the amount of variance shared by the two units (e.g., two students within
the same school) as a result of context:

cov(Yi j,Yi′ j) = var(U0 j) = τ00. (1.9)

Equation 1.8 shows that the model assumes a constant variance within each cluster. This as-
sumption is not required for multilevel models with random slopes (see section 1.3.4). Equation 1.9
shows there exists dependency within clusters, unlike the independence assumption in single level
models. It also demonstrates that the covariance between observations within each cluster is equal
to the between-group variance.

Based on the between- and within-group variance components, we can calculate the correlation
between two observations from the same cluster:

corr(Yi j,Yi′ j) =
τ00

τ00 + σ2 , (1.10)

which is known as the intraclass correlation coefficient and denoted as ρI(Y ). The intraclass cor-
relation (ICC) can be interpreted as the correlation between two observations within a cluster (as
defined in Equation 1.10) and also as the proportion of the variance accounted for by groups. In
other words, the ICC indicates the degree of association among observations within clusters. The
value can be as small as zero (when τ00=0) and as large as one (when σ2 = 0). A large ICC reflects
a high degree of resemblance and strong dependence among observations. The ICC can also be
calculated after entering predictors to the model, in which case it is referred to as a residual ICC.

Note that although ρI(Y ) is often simplified to ρI , the ICC depends on the variable of interest
and different ICCs would be calculated for different variables. For example, an ICC of mathematics
scores can be higher than an ICC of history scores, indicating a stronger correlation among mathe-
matics scores within the same classes or schools than history scores. In the PIRLS2006US data, we



16 MULTILEVEL ANALYSIS OF LARGE-SCALE ASSESSMENT DATA

fit empty models using readingPV1 to readingPV5 separately and combined the results (see sec-
tion 1.2.6). The average ICC for reading proficiency was 1244.05/(1244.05 + 4282.11) = .225 with
values of .223 to .230 across the five plausible values. The estimated ICC suggests a total variance
of 5526.16, about 22.5% of which is attributable to differences between schools.

1.3.3 Modeling Strategy

Statistical modeling is a process that is guided by substantive theory, the results of exploratory
analysis, and results from fitting various models to the data. The two most common approaches
advocated in the literature on linear mixed models are “step-up” and “top-down” methods (Ryoo,
2011). The step-up method starts with a simple within structure including a random intercept to
which fixed effects are successively added followed by random effects (?Raudenbush and Bryk,
2002). The top-down approach starts with the most complex polynomial model representing (Level
1) effects and a random intercept, where the first step is to determines the correct order of the
polynomial and in the second step to build the random effects part of the model (Diggle et al.,
1994; Verbeke and Molenberghs, 2000). The top-down approach lends itself better than the step-up
approach to longitudinal data where change is not always linear. The little research that exists on
the subject of modeling approaches with linear mixed models has found that the step-up approach
tends to identify the true model in simulations more effectively than the top-down method (Ryoo,
2011). In this section a version of the step-up approach is used where we start with simple models
and work toward more complex ones. Besides the work by Ryoo (2011), a reason for preferring this
approach is that a model with all potentially interesting fixed and random effects suggested by the
exploratory analysis may fail as a starting model because complex models are often not supported
by the data; that is, such models frequently fail to converge or yield improper solutions (e.g., not a
proper covariance matrix TTT ).

1.3.4 Model Specification and Comparison

Model building in multilevel analysis consists of selecting fixed effects for the mean structure and
random effects for the covariance structure. The two structures are not independent. The mean struc-
ture aims to explain the systematic part of the variability of the outcome (e.g., reading proficiency in
our example) and the covariance structure helps to account for the random or unexplained variance
in the data. Whereas traditional single-level regression such as ANCOVA models focuses mainly on
the mean structure, it is critical to specify the appropriate covariance structure in multilevel models
because an under-parameterized covariance structure invalidates statistical inferences and an over-
parameterized covariance structure leads to inefficient estimation and poor standard errors (Verbeke
and Molenberghs, 2000). Therefore, both appropriate mean and covariance structures are essential
for making valid conclusions and proper predictions.

Although no strategy guarantees the optimal model or a model that satisfies all assumptions,
a combination of general modeling guidelines and exploratory data analysis can help find a good
model with appropriate mean and covariance structures. We propose an eight-step procedure for
model building as follows. First, examine the data using exploratory data analysis (EDA) includ-
ing the strategies in section 1.2.4. Second, specify systematic (fixed effects) that are of theoretical
importance. Third, build a random effects structure (possibly based on results of EDA). Fourth,
revisit and revise fixed effects based on EDA and conduct tests for the fixed effects. Fifth, retest
random effects and possibly revise. Sixth, repeat/cycle through the fourth and fifth steps. Seventh,
conduct model diagnostics and residual analysis. Eighth and finally, interpret results. We followed
this eight-step strategy for our analysis in this chapter.

After examination of the empty model, we included a set of theoretically important fixed effects
(Model 1), examined potential random effects (Models 2 and 3), and considered other predictors
that might also be important (Model 4). The parameter estimates and model fit indexes of Models 1
to 4 are shown in Table 1.3.5. The fixed effect estimates are the means of the estimates taken across
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the 25 imputed datasets using Equation 1.1, and the corresponding standard errors are calculated
using Equation 1.2 in section 1.2.6.

One can use either model-based or empirical standard errors to compute test statistics for the
fixed effects. The model-based standard errors are obtained under the assumption that the covari-
ance matrix of the observations is specified correctly, and the empirical standard errors are based
on the residuals. The latter are also referred to as Huber-White’s robust sandwich standard errors
(Huber, 1967; White, 1980). It is known that model-based standard errors tend to be underesti-
mated when a model is misspecified, whereas the empirical standard errors are relatively robust to
model misspecification (Diggle et al., 1994; Raudenbush and Bryk, 2002). Kim and Frees (2005,
2006) also showed through simulations that model-based standard errors are particularly sensitive
to misspecification due to omitted variables. We used empirical standard errors in our analysis.

In addition to statistical tests for individual regression coefficients using t test statistics, we com-
pared the models by means of likelihood values, AIC, and BIC. We obtained these model fit indexes
for each model in the 25 datasets and also reported the standard deviations of the indexes across
the imputed datasets. Only −2log Likelihood vary in AIC (= −2log Likelihood + 2×the number of
parameters) and BIC (= −2log Likelihood + 2×the number of parameters×log(N)); therefore, the
standard deviations are the same for the three fit indexes for each model.

We also reported the standard deviations of variance components across the imputed datasets
rather than standard errors. Standard errors of variance components are known to be unreliable in
multilevel models, and it is advised not to use standard errors to evaluate the significance of variance
components. Some multilevel software (e.g., package lme4 in R) do not provide standard errors for
variance components. Instead, a likelihood ratio test statistic based on the full and reduced models
is used to compare two models with and without a random effect. Moreover, the likelihood ratio
test for comparing fixed effect parameters needs to be modified to test the significance of a random
effect, as testing variance components deals with a null hypothesis at the boundary value (e.g.,
H0 : τ11 = 0) and a directional alternative hypothesis (e.g., H1 : τ11 > 0).

A simple modification of the χ2 critical value can account for the otherwise overly conservative
likelihood ratio test for variance components. Specifically, results from simulation studies (?Stram
and Lee, 1994, 1995) have shown that when testing H0 : τ00 = 0 verses H1 : τ00 > 0, the likelihood
ratio test statistic asymptotically follows a distribution of 1

2 χ2
1 rather than χ2

1 . The asymptotic dis-
tribution of the likelihood ratio test statistic for testing an additional random effect (e.g., random
slope) is shown to be a mixture of χ2

1 and χ2
2 distributions. This implies that for testing the signif-

icance of the first random slope by comparing −2log Likelihood of Model 1 and Model 2 (which
has two more parameters τ11 and τ01 than Model 1) at the Type I error rate of 0.05, the proper crit-
ical value is 1

2 χ2
1 + 1

2 χ2
2 = 1

2 (3.84 + 5.99) = 4.92, which is smaller than the standard likelihood ratio
test critical value with two degrees of freedom. For testing the second random slope by comparing
Model 2 and Model 3 (with three more parameters τ22, τ02 and τ12), we can use the critical value of
1
2 χ2

2 + 1
2 χ2

3 = 1
2 (5.99 + 7.81) = 6.90. This downward adjustment in the critical values using mixture

distributions makes the likelihood ratio test for random effects more accurate.
Table 1.3.5 shows that AIC and BIC contradict each other in regard to the best fitting model for

this example. While Model 3 (random slopes of comgames5H and female) has the smallest AIC,
Model 1 (random intercept only) has the smallest BIC. However, the four models are nested within
each other and we can also directly compare them using the likelihood ratio test. To compare nested
models via likelihood values, it is important to estimate models using the full information maximum
likelihood (FIML) method, not the residual maximum likelihood (REML) method. All models in
this chapter were estimated by the FIML method.

In the comparison of Model 1 versus Model 2 with the random slope of comgames5H, the dif-
ference in −2log Likelihood is 5.14, which is greater than the critical value of 1

2 χ2
1 + 1

2 χ2
2 = 4.92,

suggesting the effects of comgames5H vary across schools. In the comparison of Model 2 versus
Model 3 with the additional random slope of female, the difference in −2log Likelihood is 11.80
and is greater than the critical value of 1

2 χ2
2 + 1

2 χ2
3 = 6.90, suggesting the effect of gender is also

different across schools. Finally, in comparing Model 3 to Model 4 with the additional predictors of
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mombornUS, schoolLIB, and the interaction between female*econDisadv, the standard critical
value for the likelihood ratio test was used because the difference between the two models involves
only fixed effects. The difference in −2log Likelihood is 11.31 between Model 3 and Model 4 with
six additional parameters, and this difference is smaller than the critical value of χ2

6 = 14.07. There-
fore, based on the series of likelihood ratio tests, we chose Model 3 as the best fitting model in our
analysis.

Although the summary statistics in Table 1.2.3 suggest that whether a student’s mother was
born in the US is important with respect to that student’s reading performance, the effect was not
significant in Model 4. We suspect this is due to the strong association between dadbornUS and
mombornUS. Among 5,038 students who answered each question as “yes”, “no”, or “don’t know”,
84% chose the same category for the two questions. Therefore, there is little unique information
in mombornUS when dadbornUS is already in the model, and the two highly correlated variables
lead to multicollinearity in estimation. For a similar reason, we speculate whether the school has a
library or not seems important based on the mean reading performance, but the effect of schoolLIB
is not significant when econDisadv is already in the model. Those schools without a library all had
high percentages of economically disadvantaged students. We also examined a number of interac-
tions including the cross-level interaction female*econDisadv but did not observe a significant
interaction effect.

1.3.5 R2 Type Measures for Explained Variance

In standard regression models, the R2 index represents the percentage of variance in the outcome
variable that is accounted for by the explanatory variables. In multilevel models, there are compli-
cations with the use of R2 to assess prediction. One complication is that there are models at multiple
levels that represent different sources of variance in the data; within-cluster and between-cluster
models. Therefore, different R2 type measures can be calculated at each level, often referred to as
R2

1 for a level-1 model and R2
2 for a level-2 model.

In single-level linear regression, R2 has a number of different interpretations, including the
squared correlation between observed and predicted values of the response, the proportion decrease
in variance of the response given the predictor variables, and the proportional reduction of predic-
tion error variance. The definition of the proportional reduction in explained variance is problematic
in multilevel models because it is theoretically and empirically possible that a residual variance at
some level of the model will increase after adding an explanatory variable, and thus interpreting R2

as a simple percentage of variance accounted for (analogous to single-level regression analysis) is
not recommended.

Snijders and Bosker (1994, 1999) proposed some alternative ways to define explained variation
that provide less problematic interpretations based on the proportional decrease in prediction error
variance (i.e., the mean squared error of prediction). Specifically, consider a two-level random in-
tercept model with variance components at levels 1 and 2, denoted σ2 and τ00, respectively. We
will obtain different estimates of the two variance components under an empty unconditional model
(Equation 1.7) and a conditional model with explanatory variables. Denote the estimates from the
unconditional model as (σ̂2

1 and τ̂00)unconditional and the conditional model as (σ̂2
1 and τ̂00)conditional.

Snijders and Bosker (1999) defined their alternative R2 indices as follows. The first index is the
proportional reduction of error for predicting a level-1 outcome, and can be computed as:

R2
1 = 1−

(σ̂2
1 + τ̂00)conditional

(σ̂2
1 + τ̂00)unconditional

. (1.11)

The second index is the proportional reduction of error for predicting a group mean, which can
be computed as:
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R2
2 = 1−

(σ̂2
1 /ñ + τ̂00)conditional

(σ̂2
1 /ñ + τ̂00)unconditional

, (1.12)

where ñ is the expected number of level-1 units per level-2 unit. When the number of level-1 units,
n j , varies greatly across level-2 units, ñ can be substituted by the harmonic mean:

ñ =
M

∑
M
j=1(1/n j)

.

Relative to the arithmetic mean, the harmonic mean gives less weight to clusters with much
larger sample sizes and thus is more appropriate as the expected number of level-1 units per level-2
unit in the population. In the PIRLS2006 example, the harmonic mean for the number of students
per school is 23.39 (as opposed to the arithmetic mean of 28.36).

Note that Equations 1.11 and 1.12 represent R2
1 and R2

2 for a random intercept model as the
conditional model. However, our final model (Model 3 in Table 1.3.5) consists of two random slopes.
Although R2

1 and R2
2 can be calculated for random slope models, the process is considerably more

complicated than for random intercept models, as level-2 variances are not constant but functions of
explanatory variables. Recchia (2010) developed a SAS macro to calculate R2

1 and R2
2 for multilevel

models. Alternatively, Snijders and Bosker (1999) suggested using approximate R2
1 and R2

2 values
based on a random intercept model, as the values of R2

1 and R2
2 for random intercept and random

slope models are similar when they have the same fixed effects specification.
Following the suggestion by Snijders and Bosker (1999), we calculated approximate R2

1 and R2
2

in our example by comparing the empty unconditional model to the random intercept conditional
model, Model 1 in Table 1.3.5, which is identical to our final model except for the two random
slopes. We obtained R2

1 and R2
2 for each of the 25 datasets and the values are reasonably stable

across the imputed datasets. At level-1, R2
1 varies from .206 to .225, with a mean of .214 (SD =

0.005), implying that there is a 21.4% reduction in the mean square prediction error within schools.
At level-2, R2

2 varies from .509 to .544, with a mean of .525 (SD=.009), implying that we reduced
predictive error 52.5% for the school means by including explanatory variables.

1.3.6 Incorporating Design Weights

Often with complex large-scale surveys, the probability of selection of clusters and observations
within cluster are unequal. Typically, weights are given by the organization conducting the survey
that reflect the design of the study. When weights are excluded from the modeling, parameter esti-
mates may be biased but efficient; however, including weights leads to unbiased estimates but less
efficient ones. The decision to include design weights or not should be based on whether the weights
are likely to have an impact or are informative and whether the probability of selection (the sam-
pling model) is related to the probability model for the data (i.e., the HLM). To determine whether
weights are informative, we need to compute them and examine their distribution.

We adopted recommendations by Rutkowski et al. (2010) for computing weights in surveys
such as the PIRLS. Weights should be computed for each level of sampling. Besides having unequal
selection probability, the selected units may not all respond. The weights for students (Level 1 or
secondary units) will be computed as the product of student and class weights:

w1i j` = (WFi j`×WAi j`)︸ ︷︷ ︸
student i

(WFj`×WA j`)︸ ︷︷ ︸
class `

, (1.13)

where WFi j` and WFj` are the inverses of the probabilities for the selection of student i and class
` from school j, respectively, and WAi j` and WA j` are the weight adjustments for non-response for
student i and class ` from school j. The weight adjustments are for those students and classes that
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Table 1.4 Model coefficients, standard errors and fit indexes, averaged across 25 (5 plausible outcome values
× 5 independent variable imputations) data sets. Between-imputation standard deviations for the fit indexes
are also presented.

Model Model 1 Model 2 Model 3 Model 4
Fixed Effects Coefficient (SE)
Intercept 544.93 (6.08) 545.29 (6.14) 544.19 (6.15) 523.72 (11.95)
female 2.05 (2.20) 2.10 (2.19) 2.08 (2.19) -3.00 (3.644)
enjoyreading(agree a little) -9.32 (2.29) -9.31 (2.29) -9.18 (2.29) -9.13 (2.30)
enjoyreading(disagree a little) -22.78 (3.70) -22.90 (3.70) -22.56 (3.67) -22.28 (3.66)
enjoyreading(disagree a lot) -28.53 (3.60) -28.57 (3.61) -28.65 (3.59) -28.73 (3.58)
bornUS 18.30 (4.10) 18.00 (4.15) 18.01 (4.17) 17.27 (4.25)
dadbornUS(don’t know) -8.40 (3.43) -8.26 (3.45) -8.21 (3.46) -5.55 (4.31)
dadbornUS(yes) 6.84 (3.13) 6.92 (3.13) 7.04 (3.12) 5.32 (3.49)
home25books 16.12 (2.22) 15.99 (2.20) 16.01 (2.21) 15.93 (2.22)
watchTV5H -15.15 (2.52) -15.22 (2.53) -15.09 (2.54) -14.93 (2.55)
comgames5H -16.05 (2.79) -16.14 (2.80) -16.02 (2.85) -15.75 (2.86)
econDisadv(>50%) -42.15 (5.09) -42.45 (5.11) -40.80 (5.05) -45.68 (6.27)
econDisadv(26-50%) -14.62 (5.18) -14.53 (5.23) -14.00 (5.22) -17.19 (6.24)
econDisadv(11-25%) -6.11 (5.93) -6.27 (5.96) -5.82 (5.71) -8.17 (7.77)
mombornUS(don’t know) -5.48 (5.12)
mombornUS(yes) 2.83 (3.51)
schoolLIB 23.82 (9.92)
female×econDisadv(>50%) 8.13 (4.67)
female×econDisadv(26-50%) 5.61 (5.80)
female×econDisadv(11-25%) 3.47 (7.26)
Variance Components Coefficient (SD)
σ2 3834.80 (117.33) 3804.26 (116.431) 3773.05 (120.57) 3768.94 (119.92)
Intercept τ00 513.84 (76.12) 520.11 (85.64) 712.09 (131.62) 700.66 (133.84)
Slope (comgames5H) τ11 152.87 (91.31) 165.53 (110.43) 162.12 (110.82)
Slope (female) τ22 125.33 (83.38) 114.59 (79.55)
Covariance τ01 -35.50 (72.43) -82.73 (103.61) -75.37 (105.34)
Covariance τ02 -201.15 (86.79) -197.11 (88.31)
Covariance τ12 14.43 (71.42) 2.522 (72.54)
Fit Indexes (SD)
−2× log Likelihood 57831.47 (83.15) 57826.33 (83.05) 57814.53 (82.00) 57803.22 (83.10)
AIC 57863.47 (83.15) 57862.33 (83.05) 57856.53 (82.00) 57857.22 (83.10)
BIC 57968.35 (83.15) 57980.32 (83.05) 57994.18 (82.00) 58034.19 (83.10)

were selected but did not choose to participate (Rutkowski et al., 2010). The school weights used
are

w2 j = WFj ×WA j, (1.14)

where WFj is the inverse of the probability of selecting school j, and WA j is the weight adjustment
for school j.

One way to assess the informativeness of the weights is to examine their distribution. If the
selection probabilities are equal and all selected units respond, then the weights would all be equal
and their variance would be zero. In this case, the sampling would be the same as simple random
sampling and the weights could be set to one. In the PIRLS data, the mean of the weights for schools
equals 305.42 and their standard deviation is 218.64, which suggests that the Level 2 weights are
informative. For the student level, the means of students within schools are mostly equal to one and
74% of the schools have standard deviations that equal zero. Of the remaining schools, 21% have
standard deviations that are less then 0.05 and the other 5% have standard deviations less than 0.13.
These standard deviations suggest that the Level 1 weights are not informative and will likely have
no impact on the analysis. Additional methods to assess the informativeness of weights are given in
Chapter ??.

The weights are typically scaled according to one of two methods that were discussed in Pfeffer-
mann et al. (1998). The method used here is to scale the weights so that their sum equals the sample
size; that is, ∑ j w2 j = 183 and ∑i ∑` w1i j` = n j.
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Table 1.5 Model 3 with and without weights. Model coefficients, standard errors and fit indexes, averaged
across 25 (5 plausible outcome values × 5 independent variable imputations) data sets are shown.

Model 3 without weights Model 3 with weights
Fixed Effects Coef SE t Coef SE t
Intercept 544.19 6.15 88.51 535.07 7.09 75.53
female 2.08 2.19 0.95 2.89 2.84 1.02
enjoyreading(agree a little) -9.18 2.29 -4.01 -9.71 3.21 -3.02
enjoyreading(disagree a little) -22.56 3.67 -6.15 -29.15 4.76 -6.13
enjoyreading(disagree a lot) -28.65 3.59 -7.97 -29.23 4.37 -6.69
bornUS 18.01 4.17 4.32 21.00 5.29 3.97
dadbornUS(don’t know) -8.21 3.46 -2.38 -8.53 4.17 -2.04
dadbornUS(yes) 7.04 3.12 2.26 7.75 3.53 2.19
home25books 16.01 2.21 7.25 17.49 2.59 6.75
watchTV5H -15.09 2.54 -5.94 -13.30 2.86 -4.66
comgames5H -16.02 2.85 -5.61 -16.02 3.08 -5.20
econDisadv(>50%) -40.80 5.05 -8.08 -37.85 6.80 -5.57
econDisadv(26-50%) -14.00 5.22 -2.68 -4.86 6.64 -0.73
econDisadv(11-25%) -5.82 5.71 -1.02 2.10 6.35 0.33

Variance Components Coef SD. Coef SD
σ2 3773.05 120.57 3719.26 136.67
Intercept τ00 712.09 131.62 771.03 225.17
Slope (comgames5H) τ11 165.53 110.43 151.06 121.20
Slope (female) τ22 125.33 83.38 166.10 112.42
Covariance τ01 -82.73 103.61 -71.53 116.70
Covariance τ02 -201.15 86.79 -227.32 129.01
Covariance τ12 14.43 71.42 45.86 83.41

Weights are incorporated into the model during estimation. The log-likelihoods for the lowest
level units (i.e., students) are multiplied by their respective weights and summed over the values
within a cluster. Cluster-specific values are found by integrating out the random effects (i.e., Up j’s).
The cluster-specific values are summed after being multiplied by their respective weights w2 j to
yield a function of all the data (Grilli and Pratesi, 2004; Rabe-Hesketh and Skronkal, 2006). The
parameters that maximize the function are maximum pseudolikelihood estimates. They are not max-
imum likelihood estimates because the log-likelihoods are multiplied by weights. For more details,
see Chapter ??, Grilli and Pratesi (2004), or Rabe-Hesketh and Skronkal (2006).

To illustrate the effect of including weights, we fit Model 3 (our best model without weights)
with weights. The results are summarized in Table 1.3.6. Since we are using pseudolikelihood esti-
mation the sandwich or robust estimates of the standard errors are presented. The lower efficiency
resulting from including weights is evident by comparing the standard errors of the parameter esti-
mates. The estimates with the weights are larger than those without weights. One of the school-level
variable effects, econDisadv (26-50%) has very different regression coefficient estimates (-14.00
vs. -4.86) and is not significant in the model with weights.

1.3.7 Model Diagnostics

Before turning to interpretation, we consider an often neglected part of multilevel modeling: inves-
tigating whether there are potential violations of models assumptions or systematic misfit of the
model to data. Snijders and Bosker (2012) cover diagnostics for multilevel models in great detail.
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We will restrict our attention to examination of residuals and the assumption of normally distributed
random effects and illustrate some of the possible methods using Model 3 without weights.

Figure 1.6 includes various model diagnostic plots. In the top row of plots, we examine the
cluster-specific or conditional Pearson residuals. These residuals are based on predictions that in-
clude both the fixed effects from Table 1.3.5 and empirical Bayes estimates of the random effects
(i.e, U0 j, U1 j and U2 j). The analogous plots for marginal predictions (i.e., those that excluded esti-
mates of the random effects) were similar to those in Figure 1.6. The plots for each imputed dataset
were very similar to each other; therefore, we averaged over the 25 imputed data sets and present a
single set of plots.

In Figure 1.6 (a), conditional Pearson residuals are plotted against predicted reading scores. If
a model is a reasonable one, we should see a random collection of points, approximately equal
residual variances across levels of the predicted variables, and no apparent patterns. This is the case
in our example. A pattern will often been seen where a response variable is subject to either a floor
or ceiling effect (i.e., scores were bounded either from below or above). In such a case, we would
likely see a linear relationship. The analogous plot for the marginal effects shows a pattern in that
there is a maximum possible value for the predicted reading scores (i.e., a straight vertical line of
points at predicted reading scores equal to around 575).

Figures 1.6 (b) and (c) are designed to examine the normality assumption. Figure 1.6 (b) is a
histogram of the conditional Pearson residuals with the normal distribution overlaid and (c) is a Q-Q
plot. From the Q-Q plot it appears that the tails of the distribution of residuals are a bit heavy, but
overall normality seems reasonable.

In Figure 1.6 (d), (e) and (f) are histograms of the estimated random effects with normal distribu-
tions overlaid. If the assumption that the random effects are multivariate normal, then the distribution
of estimated Up j’s should be normal. Although the estimated Up j’s look roughly normal, this only
means that the assumption is tenable. It is possible that the true underlying distribution of random
effects is not-normal but the estimates of the Up j’s may appear normal (Verbeke and Molenberghs,
2000). If the distribution of Ûp j is not-normal, then the assumption is not valid.

1.3.8 Interpretation of Results

The final model, Model 3, has 14 regression coefficients and seven random effect parameters (vari-
ance σ2 at level 1 and a 3× 3 variance-covariance matrix at level 2) with one random intercept
and two random slopes. The intercept of 544.21 is the expected reading proficiency score when all
predictors are zero, implying male students who enjoy reading a lot, were not born in the US, have a
father who is also not born in the US, have less than 25 books at home, watch TV or play computer
games less than five hours per day, and attend a school where the percentage of economically disad-
vantaged students is less than 10%. Female students who were born in the US, have a father born in
the US and/or have more books at home on average would have better reading performance. On the
other hand, those who don’t enjoy reading as much, watch TV or play computer games five hours
or more per day, and/or attend a school with a higher percentage of economically disadvantaged
students on average would be expected to have lower reading proficiency scores.

The random intercept represents heterogeneity across schools in terms of their residual reading
performance even after accounting for explainable differences by the fixed effects. Model 3 has two
random slopes, both corresponding to predictors that are binary variables. The random slopes sug-
gest that the effects of gender as well as excessive hours on computer games vary across schools. As
the two variables are both binary, we can consider four subgroups whose variances are different. For
male students who spend less than five hours on computer games (i.e., female=0, comgames5H=0),
the variance of reading proficiency is estimated as τ̂00 + σ̂2 = 4485.88. For male students who
spend five or more hours on computer games, the variance is τ̂00 + 2τ̂02 + τ̂22 + σ̂2 = 4485.65.
For female students who who spend less than five hours on computer games, the variance is
τ̂00 + 2τ̂01 + τ̂11 + σ̂2 = 4208.72. Finally, for female students who spend five or more hours on com-
puter games, the variance is estimated as τ̂00 +2τ̂01 + τ̂11 +2τ̂02 +2τ̂12 + τ̂22 + σ̂2 = 4235.31. Therefore,
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Figure 1.6: Various model diagnostics for Model 3 that include empirical Bayes estimates for random effects.

the heterogeneity is the greatest among males who spend less than five hours on computer games.
Females who spend less than five hours on computer games (the highest performance group among
the four) are the most homogeneous group of students.

1.4 Discussion

1.4.1 Other Multilevel Models

Although the two-level models in this chapter where students are nested within schools are com-
mon in large-scale assessment data, other multilevel models are also widely used and are gaining
greater interest. Three in particular are worth considering in the analysis of international assessment
data: three-level models, repeated measures models, and nonlinear models for discrete outcomes.
For three-level models, countries or other primary sampling units, such as states, districts, or coun-
ties, can be entered as the highest level. Depending on the number of level-3 units, distributional
assumptions, and omitted factors, the highest level can be treated as fixed or random. There exists
an extensive literature on this topic in econometrics (Hausman, 1978; Hausman and Taylor, 1981)
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and more recently in psychometrics (Kim and Frees, 2006, 2007). For example, we can extend the
current analysis by considering another country or two and modeling results for multiple countries
simultaneously. In such analyses, it should be clarified that the meanings of the variables and levels
are comparable across countries. However, many variables in such analyses need to be analyzed
in context and their meanings may not be exchangeable across countries (e.g., born in the country,
parents born in the country, first language, economically disadvantaged, eligible for free or reduced-
price meal, etc.)

Another important type of multilevel analysis is repeated measures analysis, which includes but
is not limited to longitudinal data analysis. As large-scale assessment data often consist of scores
on multiple subjects or multiple aspects of a subject (e.g., reading achievement/behavior/attitude or
different domains of mathematics), several related outcomes can be available for each student. In a
longitudinal design, students’ performances and attitudes may be recorded over time to study intra-
individual change as well as inter-individual differences. When multiple dependent variables are
nested within students, these repeated measures can be treated as level-1 units in multilevel models.
In such models, students are often entered as level-2 units, and schools are considered as level-3
units. Dependency among the level-1 units is usually very high in repeated measures models as the
values belong to the same students, and a flexible variance-covariance structure may be needed to
account for the complex dependency among repeated measures. Multivariate multilevel models or
latent growth curve models are commonly used for multiple subjects with longitudinal assessment
data.

Finally, large-scale assessment data almost always include survey questionnaires which require
respondents to select one of a given set of response options, thus yielding discrete outcomes. Dis-
crete outcomes data call for the use of alternative models designed to handle their special nature.
In the context of large-scale assessment studies that use complex sampling designs, complications
arise because the data are typically clustered data and the probability of selection is not equal for
all units. Chapter ?? in this handbook is devoted to this issue, written by the same authors of this
chapter. Multilevel models for discrete outcomes are also referred to as generalized hierarchical
linear models.

1.4.2 Current and Future Research in Multilevel Analysis

There was a time when multilevel analysis was considered a highly advanced statistical method and
used by only a limited number of trained methodologists. In the recent years, however, multilevel
modeling has become available to many substantive researchers and practitioners, in our opinion
largely owing to the publication of accessible textbooks, the availability of user-friendly software,
and regularly offered courses and workshops. Several textbooks appear to be widely used across the
disciplines, including Raudenbush and Bryk (2002), Snijders and Bosker (2012), Hox (2010), and
Goldstein (2010).

Multilevel analysis has proven its importance in the social sciences, and the methodology has
great potential for advancing the design and utilization of large-scale assessment data. In educational
research, despite immense effort and investment, results from educational effectiveness studies re-
main inconsistent (Ehrenberg et al., 2001; Goldhaber and Brewer, 1997; Ludwig and Bassi, 1999).
There are mixed findings concerning what district, school, teacher, neighborhood, family, and stu-
dent variables make significant differences on educational outcomes such as improving students’
academic achievement or reducing dropout rates, let alone the size of their effects. More recently,
the Programme for International Student Assessment (PISA) and other international assessments
have found counter-intuitive relationships between achievement scores and attitudes at the country
level. For example, in the PISA2006 data, students with higher science achievement scores indicated
more positive attitudes toward science as expected, when the data are analyzed within countries.
However, the relationship between achievement and attitudes was reversed at the country level and
it was found that high science achievements are associated with more negative attitudes based on
between-country correlations (Lu and Bolt, pril).
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Puzzling or inconsistent findings in educational research are due to multiple factors includ-
ing inherent difficulties in isolating the effects of variables involved in complex educational pro-
cesses, omitted confounding factors, non-random missingness and attrition, selection bias related
to school and program choice, and different dynamics among variables across clusters (e.g., coun-
tries or schools). Yet, it is often infeasible to design comprehensive experimental studies in school
settings for apparent ethical and/or practical reasons. It is also impractical to expect no missing-
ness or missing completely at random, or to collect all relevant variables to account for selection
mechanisms and cultural differences.

Consequently, there is always a danger in education as well as other areas in the social sciences
that decision making and policy implementation can be based on inaccurate information or in some
cases misleading findings. Although we attempted to be careful in our model specification and diag-
nostics, the purpose of our data analysis is for demonstrating the application of multilevel analysis
to large-scale assessment data rather than making practical recommendations or drawing substan-
tive conclusions, as further investigation is necessary to provide stronger claims of causal inference
between predictors and reading outcomes. Chapter ?? in this handbook deals with making causal
inferences using large-scale assessment data.

Despite many advances during the past several decades, there remain important theoretical and
technical issues to be addressed in multilevel analysis. For example, although there exists a large
body of literature with regard to imputation approaches for missing data, there is a lack of method-
ological development for effectively imputing missing values while preserving yet utilizing the mul-
tilevel structure, especially for discrete outcomes (for continuous outcomes, see Chapter ?? in this
handbook). Also, whereas various matching designs and strategies have been proposed in studies of
educational effectiveness with observational data, little has been done on matching non-equivalent
groups in the context of multilevel data. This delayed progress is largely due to the complexity of
adapting statistical techniques for imputation and matching strategies into the multilevel framework,
as the necessary modifications are not straightforward (Steiner et al., gust). Nonetheless, considering
the needs of these techniques and active research on these topics, we expect promising methodolog-
ical developments as well as increasing applications of multilevel analysis in the coming years.
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