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Reading and References

Reading: Snijders & Bosker, chapter 12

Additional References:

Diggle, P.J., Liang, K.L., & Zeger, S.L. (2002). Analysis of

Longitudinal Data, 2nd Edition. London: Oxford Science.

Notes by Donald Hedeker. Available from his web-site
http://tigger.uic.edu/˜hedeker.

Hedeker, D., & Gibbons, R.D. (2006). Longitudinal Data Analysis.
Wiley.

Singer, J.D. & Willett, J.B. (2003). Applied Longitudinal Data

Analysis. Oxford.

Verbeke, G, & Molenberghs, G. (2000). Linear Mixed Models for

Longitudinal Data. Springer.
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Introduction

Purpose: Study change and the factors that effect change.

Data: Longitudinal data consist of repeated measurements on the
same unit over time.

Models: Hierarchical Linear Models (linear mixed models) with
extensions for possible serial correlation and non-linear pattern of
change.
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Purpose: Study Nature of Change

Goal: Study change and the factors that effect intra- and inter-individual
change.

Differences found in cross-sectional data often explained as reflecting
change in individuals.

A model for cross-sectional data

Yi1 = β0 + βcsxi1 + ǫi1

where i = 1, . . . , N (individuals) and xi1 is some time measure (e.g.,
age).

Interpretation: βcs = difference in Y between 2 individuals that differ
by 1 unit of time (x).
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Cross-Sectional Data

Ignoring longitudinal structure:

( ̂reading)i = 111.40 − 8.19(age)i
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Cross-Sectional Data (continued)

Occasion 1: ( ̂reading)i1 = 111.86 − 10.18(age)i1

Occasion 2: ( ̂reading)i2 = 140.01 − 10.50(age)i2
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A Model for Longitudinal Data

or repeated observations.

Yit = β0 + βcsxi1 + βl(xit − xi1) + ǫit

When t = 1, the model is the same as the cross-sectional model.

βl = the expected change in Y over time per unit change in the time
measure x (within individual differences).

βcs still reflects differences between individuals.

βcs and βl reflect different processes.
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A Model for Longitudinal Data

( ̂reading)it = 112.83 − 10.34(age)i1 + 15.71[(age)it − (age)i1]
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Advantages: Longitudinal Data

More Powerful.

Inference regarding βcs is a comparison of individuals with the same
value of x.

Inference regarding βl is a comparison of an individual’s response at
two times

=⇒ Assuming y changes systematically with time and retains it’s
meaning.

Each individual is their own control group.

Often there is much more of variability between individuals than
within individuals and the between variability is consistent over time.
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Advantages: Longitudinal Data (continued)

Distinguish Among Sources of Variation.

Variation in Y may be due

Between individuals differences.
Within individuals:

Measurement error & unobserved covariates.

Serial correlation.

A step toward showing causality.

Causal relativity (i.e., effect of cause relative to another).
Causal manipulation.
“Cause” precedes effect (i.e. temporal ordering).
Rule out all other possibilities.

See Schneider, Carnoy, Kilpatrick & Shavelson (2010). Estimating Causal

Effects Using Experimental and Observational Designs:A think Thank White

Paper. The Governing Board of the AERA Grant Program.
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Studying Change

Longitudinal data is required to study the pattern of change and
the factors that effect it, both within and between individuals.

Level 1: How does the outcome change over time? (descriptive)

Level 2: Can we predict differences between individuals in terms of
how they change? (relational).
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Time

Time is a level 1 (micro level) predictor.

The number of time points/occasions needed.

Measure of time should be

Reliable

Valid

Makes sense for outcome and research questions.

The Meaning does not change over time.
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Metric for Time

Example from Singer & Willett:

If you want to study the “longevity” of automobiles.

Change in appearance of cars −→ Age.

Tire wear −→ Miles.

Wear of ignition system −→ Trips (# of starts).

Engine wear −→ Oil changes.
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Metric & Clock for Time

Example from Nicole Allen et al.

Study the change in arrest rates following passage of law in 1994 requiring
coordinated responses to cases of domestic violence.

Daily data from all municipalities in Illinois (excluding those in Cook)
from 1996 to 2004.

Zero point?
1996?
When council (coordinated response) began?
Others

Metric? (Daily, Weekly, Monthly, Quarterly, Yearly?)

Level? (Municipality? County? Circuit?)
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Three Major Approaches

to analyze longitudinal data.

Classic reference: Diggle, Liang & Zeger

Marginal Analysis: Only interested in average response.

Transition Models: Focus on how Yit depends on past values of Y
and other variables (i.e., conditional models, Markov models).

Random Effects Models: Focus on how regression coefficients vary
over individuals.
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Marginal Analysis

Focus on average of the response variable:

Ȳ+t =
1

N

N
∑

i=1

Yit

and how the mean changes over time.

In HLM terms, only interested in the fixed effects,

E(Yit) = XiΓ.

Observations are correlated, so need to make adjustments to variance
estimates, i.e., var(Yi) = Vi(θ) where θ are parameters.

“Sandwich estimator” or Robust estimation (of standard errors of
parameters).
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Transition Models

Focus on how Yit depends on pervious values of Y (i.e., Yi,(t−1),
Yi,(t−2),. . . ) and other variables.

Model the Conditional Distribution of Yit,

E(Yit|Yi,(t−1), . . . , Yi,1,x) =

p
∑

k=1

βkxitk +

(t−1)
∑

k=1

αkYi,k

Such models include assumptions about

Dependence of Yit on xit’s.

Correlation between repeated measures.
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Transition Models (continued)

We have focused on continuous/numerical Y ’s, but when Y is categorical,

“Stage sequential models” (e.g., must master addition and
subtraction before can master multiplication).

The “gateway hypothesis” of drug use.

Digression: When an event occurs is another type discrete outcome
variable, but we’re not considering such discrete variables in this class.
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Random Effects Models

Observations are correlated because repeated measurements are made
on the same individual.

Regression coefficients vary over individuals, i.e.,

E(Yit|βi1, . . . , βip) =

p
∑

k=1

βikxikt

One individual’s data does not contain enough information to
estimate βik’s ; therefore, we assume a distribution for βik’s,

βi = XiΓ+ZiUi

where Ui ∼ N (0,T ) i.i.d..
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Advantages of HLM

for Longitudinal Data

Explicitly model individual change over time.

Simultaneously and explicitly model between- and within-individual
variation.

Explanatory variables can be time-invariant or time-varying.

Flexible modeling of covariance structure of the repeated measures.

Many non-linear patterns can be represented by linear models (e.g.,
polynomial, spline).
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Advantages of HLM

Flexible treatment of time

Time can be treated as a continuous variable or as a set of fixed points.

Can have a different numbers of repeated observations. (implication:
can handle missing data).

Can extend HLM models to higher level structures (e.g., repeated
measurements on students within classes, etc).

Generalizations exist for non-linear data.
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HLM for Longitudinal Data

Uses everything we’ve learned about HLM’s, but requires a slight change
in terminology and notation:

Level 1 units are occasions of measurement and indexed by t (t for
“time” where t = 1, . . . , r).

Level 2 units are individuals.

Yit = measurement of response/dependent variable for individual i at
time t.

The level 1 model: within individual model.

The level 2 model: between individuals model.
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HLM for Longitudinal Data

One major change: May need a more complex model for the level 1
(within individual) residuals; that is,

Ri ∼ N (0,Σi)

where Σi = σ2I (constant and uncorrelated) may be too simple.

One’s that we’ll explicitly cover are lag 1:

Auto-correlated errors, AR(1).

Moving average, MA(1).

Auto-correlated, moving average ARMA(1,1).

TOEP(#).
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Longitudinal HLM by Example

The Riesby Data, from Hedeker’s web-site (and used in Hedeker &
Gibbons book, 2006).

Drug Plasma Levels and Clinical Response.

“Risby and associates (Riesby, et al, 1977) examined the relationship
between Imipramine (IMI) and Desipramine (DMI) plasma levels and
clinical response in 66 depressed inpatients (37 endogenous and 29
non-endogenous).”
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The Riesby Data

Outcome variable: Hamilton Depression Score (HD).

Independent variables:

Gender.

D where = 1 for endogenous and = 0 of non-endogenous.

IMI (imipramine) drug-plasma levels (µg/1). — Antidepressant given
225 mg/day, weeks 3-6.

DMI (desipramine) drug-plasma levels (µg/1). — Metabolite of
imipramine.
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The Design

Drug-Washout
day 0 day 7 day 14 day 21 day 28 day 35
wk 0 wk 1 wk 2 wk 3 wk 4 wk 5

Hamilton
Yit Depression HD1 HD2 HD3 HD4 HD5 HD6

Level 2 Gender G
Diagnosis D

Level 1 IMI — — IMI3 IMI4 IMI5 IMI6
DMI — — DMI3 DMI4 DMI5 DMI6

N 61 63 65 65 63 58

Note: n = 6 and N = 66.
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More Information About the Topic

From a Psychiatrist friend:

“Everyone uses Hamilton Depression Score”

Good that both IMI and DMI are used. In the psychiatric literature,
the sum is usually reported.

Imipramine is an older drug, which has many undesirable side effects,
but it works.

Distinction between diagnosis with respect to drug not done (relevant
to practice).
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Exploring Individual Structures
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Exploring Individual Structures
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Exploring Individual Structures
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Exploring Individual Structures: R graphs
Plots of Hamlition Index by Week: Join Points
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Exploring Individual Structures: R graphs
Plots of Hamlition Index by Week: Linear Regression
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Exploring Individual Structures: R graphs
Plots of Hamlition Index by Week: Spline
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Join Points

General linear decline and increasing variance.
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Overlay Individual Regressions
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Overlay Quadratic Regressions
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Overlay Individual Regressions
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Exploring Mean Structure
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Exploring Mean Structure (continued)
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Exploring Individual Specific Models

Based on the figures, a plausible for level 1

Yit = β0i + βi1(week)it + ǫit

Using OLS, fit this model to each person’s data and compute:

R2
i = (ssmodel)i/(sstotal)i.

R2
meta =

∑

i(ssmodel)i/
∑

i(sstotal)i.

Try to see who improves.
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Linear Model: R2
i and R
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Quadratic: R2
i and R
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Comparison
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Who Improved?
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Who Improved?
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F “Test” for Quadratic Term

Reduced Model: Yit = βo + β1(week)it + ǫit
p = 2.

Full Model: Yit = βo + β1(week)it + β2(week)
2
it + ǫit

p∗ = 1.

F -statistic:

F =
(
∑

i(sserror)(R)i − (sserror)(F )i)/
∑

i pi
∑

i(sserror)(F )i/
∑

i(ni − p− p∗)
=

1075.28/66

1858.02/177
= 1.55

Comparing F = 1.55 to the F–distribution with dfnum = 66 and
dfden = 177, the “p-value”= .01.
To be used with a Large “grain of sand” (assumptions violated)
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Preliminary HLM

Level 1: Yit = βoi + β1i(week)it + β2i(week)
2
it +Rit

Level 2:

βoi = γ00 + γ01(endog)i
β1i = γ10

β2i = γ20

Preliminary Mixed Linear Model:

Yit = γ00 + γ01(endog)i + γ10(week)it + γ20(week)
2
it +Rit
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Exploring Random Effects

Fitting this model to each individual’s data using ordinary least squares
regression we look at

Raw residuals,
R̂it = (Yit − Ŷit) = ZiUi +Ri.

Squared residuals, R̂2
it.

Correlations between residuals to look for serial correlation (i.e., need
model for Σi?)

corr(Rit, Rit′).
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Raw Residuals by Week
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Raw Residuals by Week2
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Raw Residuals with Endog
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Mean Raw Residuals
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Squared Raw Residuals
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Mean Squared Residuals
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Mean Squared Residuals (R graph)
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Variance Function

Given Preliminary Mixed Linear Model:

Yit = γ00 + γ01(endog)i + γ10(week)it + γ20(week)
2
it +Rit

Assuming Rit ∼ N (0, σ2I) and random intercept and slopes, i.e.,

(U0i, U1i, U2i)
′ ∼ N (0,T )

The variance of Yit is 4th order polynomial

var(Yit) = τ20 + τ21week
2
it + τ22week

4
it + 2τ01weekit

+2τ02week
2
it + 2τ12week

3
it + σ2
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Variance Function: 2 Random Effects

Assuming Rit ∼ N (0, σ2I) and random intercept and slope for week,
i.e.,

(U0i, U1i)
′ ∼ N (0,T )

The variance of Yit

var(Yit) = τ20 + τ21week
2
it + 2τ01weekit + σ2

How many random effects?

Need to also consider possible serial correlation.
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Correlation Between Time Points

Entries in the table are correlation(R̂it, R̂it′).

week0 week1 week2 week3 week4 week5

week0 1.00
week1 .47 1.00
week2 .39 .47 1.00
week3 .32 .39 .73 1.00
week4 .22 .28 .66 .81 1.00
week5 .17 .19 .45 .56 .65 1.00

Note: 46 ≤ n ≤ 66 due to individuals with missing observations.
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(R) Plot of Correlations

rwide.week0

rwide.week1

rwide.week2

rwide.week3

rwide.week4

rwide.week5

rw
id

e.
w

ee
k0

rw
id

e.
w

ee
k1

rw
id

e.
w

ee
k2

rw
id

e.
w

ee
k3

rw
id

e.
w

ee
k4

rw
id

e.
w

ee
k5

C.J. Anderson (Illinois) Longitudinal Data Analysis via Linear Mixed Models 60.60/ 81



Overview Introduction Approaches Longitudinal HLM by Example Exploratory Modeling Data Summary

Plot of Correlations
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Plot of Correlations: Lags

C.J. Anderson (Illinois) Longitudinal Data Analysis via Linear Mixed Models 62.62/ 81



Overview Introduction Approaches Longitudinal HLM by Example Exploratory Modeling Data Summary

Mini-Outline (Next Steps)

Before covering possible models for the level one, fit some HLM
models to Riesby data (nothing new here).

Consider some models for level 1 residuals.

Simulation of data with different error structures.

Analyze Riesby data using alternative error structures for level 1.
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Model for Riesby Data

Within Individual (level 1)

(HamD)it = β0i + β1i(week)it + β2i(week)
2
it +Rit

where Rit ∼ N (0, σ2).

Between Individuals (level 2)

β0i = γ00 + γ01(endog)i + U0i

β1i = γ10 + γ11(endog)i + U1i

β2i = γ20 + U2i

where Ui ∼ N (0,T ).
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Linear Mixed Model

Scalar form

(HamD)it = γ00 + γ10(week)it + γ20(week)
2
it + γ01(endog)i

+γ11(endog)i(week)it + U0i + U1i(week)it

+U2i(week)
2
it +Rit

In matrix form,
Yi = XiΓ+ZiUi +Ri
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Linear Mixed Model

Yi = XiΓ+ZiUi +R











(HamD)i1
(HamD)i2

...
(HamD)ir











=











1 (week)i1 (week)2i1 Di Di(week)i1
1 (week)i2 (week)2i2 Di Di(week)i2
...

...
...

...
...

1 (week)ir (week)2ir Di Di(week)ir























γ00
γ10
γ20
γ01
γ11













+











1 (week)i1 (week)2i1
1 (week)i2 (week)2i2
...

...
...

1 (week)ir (week)2ir















U0i

U1i

U2i



+











Ri1

Ri2

...
Rir











where Di =

{

0 Non-endogenous
1 Endogenous
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Marginal Model

(HamD)it ∼ N (XiΓ, (ZiTZ ′

i + σ2I))

The covariance matrix (ZiTZ ′

i + σ2I)

The (k, t) element of Zi = {zitk} for k = 0, (q − 1) and t = 0, . . . r.

The covariance matrix for Ui:

T =





τ00 τ10 τ20
τ10 τ11 τ12
τ20 τ12 τ22





(t, t′) element of ZiTZ ′

i =
∑q

k=0

∑(q)
ℓ=k τkℓzitkzit′ℓ
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Marginal Model: Our Example

(t, t) element of ZiTZ ′

i + σ2I

var(Yit) = τ20 + τ21 (week)
2
it + τ22 (week)

4
it + 2τ01(week)it

+2τ02(week)
2
it + 2τ12(week)

3
it + σ2

(t, t′) element of ZiTZ ′

i + σ2I

cov(Yit, Yit′) = τ00 + τ10(weekit + weekit′) + τ20(week
2
it + week2it′)

+τ11(weekit)(weekit′) + τ22(week
2
it)(week

2
it′ )

+τ12(week
2
it)(weekit′) + τ12(weekit)(week

2
it′ )

+σ2

cov(Yit, Yi′t) = cov(Yit, Yi′t′) = 0.
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Covariance Parameter Estimates

Null Some Fixed Preliminary

Var: id (Intercept) 13.62 15.28 21.11
Var: Residual 37.96 19.03 10.50
Var: id week 11.23
Var: id weeksq 0.20
Cov: id (Intercept) week -11.07
Cov: id (Intercept) weeksq 1.10
Cov: id week weeksq -1.33

ρ̂ = 13.62/(13.62 + 37.95) = .26
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Solution for fixed Effects

Empty/Null Preliminary HLM
Std Std

Effect Estimate Error Estimate Error

Intercept 17.66 0.56 24.58 0.72
Week -2.66 0.51
Week*Week 0.05 0.09
Endog = 0 -1.81 1.04
Endog = 1 0 .
Week*Endog = 0 .02 0.43
Week*Endog = 1 0 .
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Global Fit Statistics

Model −2LnLike AIC BIC.new

Empty/Null 2501.1 2507.1 2515.4
Preliminary HLM 2204.0 2228.0 2263.0

Preliminary HLM
w/ cubic week 2201.7 2227.7 2266.6

To get the Preliminary with week3it (as fixed effect) to converge, I had
to do re-scale (i.e., week3it/10).

So far, go with preliminary
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Model Reduction: Random Effects

(i.e., Covariance Structure)

Test whether need random term for (week)2it,

H0 : τ
2
2 = τ02 = τ12 = 0 versus Ha : not H0

The Reduced Model,

(HamD)it = γ00 + γ10(week)it + γ20(week)
2
it + γ01(endog)i

+γ11(endog)i(week)it + U0i + U1i(week)it +Rit,

has −2lnLike = Deviance = 2214.5.
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Model Reduction: Random Effects

Test statistic: difference between −2lnLike of full and reduced models,

2214.5 − 2204.5 = 10.5

Sampling distribution is a mixture of χ2
3 and χ2

2,

p-value = .5(.015) + .5(.005) = .01

Conclusion: Reject H0.

AIC favors the model with U2i (i.e. AIC = 2232.5 vs 2228.0) while
BIC.new favors the model without U2i (i.e., BIC.new = 2260.88 vs
2263.0).
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Model Reduction: Fitted Effects

Do not remove (week)it or (week)
2
it, because of non-zero τ21 and τ22 .

Possible Reductions: “endog” and “endog×week”.

t-tests indicate don’t need these ; however,

Likelihood ratio test statistic for “week*endog” (i.e., Ho : γ11 = 0
versus Ha : γ11 6= 0),

= 2204.015 − 2204.013 = .001

df = 1, p = .97...retain Ho (i.e. drop the interaction).

Test for “endog”, in a few pages.
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Reduced Model Covariance Parameters

Preliminary No Interaction

Var: id (Intercept) 21.11 21.08

Var: id week 11.23 11.22
Var: id weeksq 0.20 0.20
Cov: id (Intercept) week -11.07 -11.06
Cov: id (Intercept) weeksq 1.10 1.10
Cov: id week weeksq -1.33 -1.33
Var: Residual 10.50 10.50

Very similar without endog × week
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Reduced Model fixed Effects

Preliminary No Interaction
est. se est se

(Intercept) 25.46 (1.17)∗∗∗ 25.48 (1.07)∗∗∗

week −2.75 (0.68)∗∗∗ −2.76 (0.64)∗∗∗

weeksq 0.05 (0.09) 0.05 (0.09)
endog 1.83 (1.28) 1.79 (0.92)
week:endog −0.02 (0.42)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Estimates are pretty similar with and without endog × week.
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Do we need“endog”?

Ho : γ01 = 0 versus Ha : γ01 6= 0

t-test using the estimates from the model without the cross-level
interaction,

t =
−1.79

.92
= −1.94, df = 65.7, p− value = .056

Likelihood ratio test statistic,

2207.648 − 2204.015 = 3.633

Comparing this to χ2
1, p-value=.056.

Conclusion: maybe/undecided about “endog”, keep it for now.
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Global Fit Statistics

Model −2LnLike AIC BIC.new

Empty/Null 2501.1 2507.1 2515.4
Preliminary HLM 2204.0 2228.0 2263.0
No endog×week 2214.5 2232.5 2260.9
No endog×week
& No endog 2207.6 2227.6 2254.8

We’ll go with this model (for now):

Yit = β0i + β1i(week)it + β2i(week)
2
it +Rit

β0i = γ00 + endogi + U0i

β1i = γ10 + U1i

β2i = γ20 + U2i

What other analyses should we do to adequacy of this model?
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Interpretation

(ĤamD)it = 24.57− 2.65(week)it + .05(week)2it − 1.79Di
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Estimated Model Individuals

(ĤamD)it = 25.48 − 2.76(week)it + .05(week)2it

−1.79Di + Û0i + Û1i(week)it + Û2i(week)
2
it
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Summary

Just an HLM

To study the nature of change & requires systematic change.

Level 1:

Time is a level 1 variable (should have at least 3 time points).
Need to choose metric of time.
”time variant” variables are level 1 variables.

Level 2:

Study differences between individuals.
”time invariant” variables are level 2 variables.

What about covariance matrix for Rit? . . .
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