
Random Effects
Edps/Psych/Soc 587

Carolyn J. Anderson

Department of Educational Psychology

c©Board of Trustees, University of Illinois



Empirical Bayes Inference Henderson’s Mixed-Model Equations BLUP Shrinkage Normality Assumption Summary SAS/R

Outline

Introduction

Empirical Bayes inference

Henderson’s mixed-model equations

BLUP: Best Linear Unbiased Prediction

Shrinkage

The normality assumption for random effects

SAS/MIXED and R

Snijders & Bosker: pp 161-172
Further reference: Verbeke & Molenberghs (Chapter 7) and therein.
(These notes are based primarily on the latter.)
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Introduction

Why get estimate of the random effects, Ûj?

See how much groups (macro units) deviate from the average
regression.

Detect outlying groups.

Predict group specific outcomes.

In education might be tempted to use these to

Select a specific school for your child to attend (see Snijders &
Bosker).

Hold schools/teachers/students accountable.
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Empirical Bayes Inference

Bayes Theorem

Empirical Bayes Estimates

Example
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Bayes Theorem

Based on probability theory, for two discrete variables,
A and B, :

joint probability = (conditional prob)(marginal prob)

P (A and B) = P (A|B)P (B) = P (B|A)P (A)

Bayes Theroem:

P (A|B) =
P (B|A)P (A)

P (B)
or P (B|A) =

P (A|B)P (B)

P (A)

C.J. Anderson (Illinois) Random Effects 5.5/ 85
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Bayes Theorem: Continuous Variables

Replace probabilities (i.e., P (.)) by probability density functions, i.e., f(.).

For two continuous variables, x and y,

f(x, y) = f(x|y)f(y) = f(y|x)f(x)

and Bayes Theroem:

f(x|y) =
f(y|x)f(x)

f(y)

or

f(y|x) =
f(x|y)f(y)

f(x)
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Bayes Theorem: Continuous Variables

We have vectors of continuous random variables:

yj, observations/measures on the response variable from individuals
in group j.

Uj, our random effects for group j.

The relationships that hold for two single variables also hold for sets of
random variables

f(yj,Uj) = f(yj|Uj)f(Uj) = f(Uj|yj)f(yj)

and

f(Uj|yj) =
f(yj|Uj)f(Uj)

f(yj)
C.J. Anderson (Illinois) Random Effects 7.7/ 85
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Empirical Bayes Estimates

f(Uj|yj) =
f(yj|Uj)f(Uj)

f(yj)

where

f(Uj) is the “prior” distribution of the random effects.

This distribution is N (0,T ).

f(yj) is the marginal distribution of the response variable,

Yj ∼ N (µy,Σy)

C.J. Anderson (Illinois) Random Effects 8.8/ 85
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Empirical Bayes Estimates (continued)

f(yj|Uj) is the conditional distribution of the response variable given
the random effects,

f(yj|Uj) ∼ N ((XjΓ+ZjUj), σ
2I)

f(Uj|yj) is the “posterior” distribution of the random effects; it’s the
distribution of the random effects conditional on the data (our
observations on our response variable and our estimated parameters,
Γ̂ and T̂ ).

C.J. Anderson (Illinois) Random Effects 9.9/ 85
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Empirical Bayes Estimates (continued)

f(Uj|yj) =
f(yj|Uj)f(Uj)

f(yj)

∝ f(yj|Uj)f(Uj)

Replacing everything on the right hand side of this equation gives the
distribution for f(Uj|yj), which is multivariate normal. (i.e., conjugate of
normal is normal).

This is what we need to get estimates/predictions of Uj.

Aside: In MCMC, we sample from

f(Uj|yj) ∝ f(yj|Uj)f(Uj)
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Estimating Uj

One way, estimate the mean of the distribution of the “posterior”
distribution, f(Uj|yj).

By the definition of the mean and algebra,

Ûj(Γ,T ) = E(Uj |Yj = yj)

=

∫
Ujf(Uj|yj)dUj

= TZ ′

jV
−1
j (yj −XjΓ)

We can get a closed form (another very nice thing resulting for using
normal distributions).
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Estimating Uj (continued)

Ûj(Γ,T ) = TZ ′

jV
−1
j (yj −XjΓ)

The integration is over all possible values of Uj (like a sum).

Vj = (ZjTZ ′

j + σ2I).

(yj −XjΓ) = (yj − ŷj).

The estimate of Uj depends on Γ and T (model), as well as on yj

(data).
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Estimating Covariance Matrix for Uj

The covariance matrix for Ûj(Γ,T ) is

var(Ûj) = TZ ′

j

[
V −1

j − V −1

j Xj

(
XjV

−1

j X ′

j

)−1
X ′

jV
−1

j

]
ZjT .

This covariance matrix isn’t good for statistical inference about
(Ûj(Γ,T ) −Uj), because it underestimates the variability of

(Ûj(Γ,T ) −Uj). . . it ignores the variability of Uj .

For statistical inference, the variance of (Ûj(Γ,T ) −Uj) is used,

var(Ûj −Uj) = T − var(Ûj).

When Γ and T are unknown and we use estimates of them, the
estimate of Uj is known as the Empirical Bayes (EB) estimate, Ûj .
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Example: HSB

A simple model.

(math)ij = γ00 + γ10(cSES)ij + U0j +Rij

SAS/MIXED input:

PROC MIXED data=hsbcent noclprint covtest method=ML ic;
CLASS id;
MODEL mathach = cSES /solution;
RANDOM intercept / subject=id type=un solution cl

alpha=.05;
ODS output SolutionR=RanUs;

C.J. Anderson (Illinois) Random Effects 14.14/ 85
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SAS/MIXED Notes

“ solution” option in the RANDOM statement tells SAS to compute
Ûj’s.

The “ODS” command (“Output Delivery System”) replaces the
“MAKE” command in earlier versions of SAS (MAKE can still be
used).

“SolutionR” is an ODS table name that refers to the random effects
solution vectors.
“RanUs” is the name of the SAS data set output that contains the
contents of the random effect solution vectors.

For other ODS table names, see SAS 9.4 PROC MIXED online
documentation.
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Getting Us for random Intercept Model

summary( model.1 ← lmer (mathach cSES + (1 |id),

data=hsb,REML=FALSE) )

ranU ← ranef(model.1)

df.1 <- as.data.frame(ranU)

head(df.1)
grpvar term grp condval condsd

1 id (Intercept) 1224 -2.6753498 0.84934807

2 id (Intercept) 1288 0.7470468 1.1238806

3 id (Intercept) 1296 -4.5904308 0.8411883

4 id (Intercept) 1308 2.9791973 1.2341147

5 id (Intercept) 1317 0.4962998 0.8411883

6 id (Intercept) 1358 -1.2514746 1.0387323
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Getting Us for random Intercept Model

Note:

condval = Conditional value = Û0j

condsd = Standard deviation of conditional value

C.J. Anderson (Illinois) Random Effects 17.17/ 85
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Getting Us for Complex Model

Note: To deal with “singular”, xyses = cses/10

model.3 ← lmer(mathach ∼ 1 + xyses + female + meanses

+ (1 + xyses + female | id),

data=hsb,REML=FALSE,

control = lmerControl(optimizer ="Nelder Mead"))

# The following is a very long data frame: n++ × 3)
U ← as.data.frame(ranef(model.3))

# Pull out what we want

Uoj ← U[which(U$term=="(Intercept)"), ]

U1j ← U[which(U$term=="xyses"), ]

U2j ← U[which(U$term=="female"), ]

C.J. Anderson (Illinois) Random Effects 18.18/ 85
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SAS/MIXED: Output

Convergence criteria met.

Covariance Parameter Estimates
Standard Z

Cov Parm Subject Estimate Error Value Pr Z

UN(1,1) id 8.6071 1.0682 8.06 < .0001
Residual 37.0056 0.6245 59.26 < .0001

Solution for Fixed Effects
Standard t

Effect Estimate Error DF Value Pr> |t|
Intercept 12.6494 0.2437 159 51.92 < .0001
cses 2.1912 0.1086 7024 20.17 < .0001

C.J. Anderson (Illinois) Random Effects 19.19/ 85
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SAS: Solution for Random Effects

Solution for Random Effects
Std Err t

Effect school Estimate Pred DF Value Pr> |t|

Intercept 1224 −2.6752 0.8782 7024 −3.05 .0023
Intercept 1288 0.7470 1.1429 7024 0.65 .5134
...

...
...

...
...

...
...

Solution for Random Effects

Effect school Alpha Lower Upper

Intercept 1296 0.05 −6.2964 −2.8840
Intercept 1308 0.05 0.5280 5.4297
...

...
...

...
...
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In R

model.1 ← lmer (mathach ∼ cSES + (1 | id), data=hsb,
REML=FALSE)

summary(model.1)

Random effects:

Groups Name Variance Std.Dev.
id (Intercept) 8.612 2.935

Residual 37.005 6.083
Number of obs: 7185, groups: id, 160

Fixed effects:

Estimate Std. Error df t value Pr(> |t|)
(Intercept) 12.65 0.24 157.72 51.90 0.00

cSES 2.19 0.11 7023.02 20.17 0.00
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In R

ranef(model.1)
$id (Intercept)

1224 -2.67534979
1288 0.74704676
1296 -4.59043077
1308 2.97919727
1317 0.49629979
1358 -1.25147457
1374 -2.52157850
1433 6.30842737
1436 4.98842414
1461 3.72090916
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Plotting U0j
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School Specific Regressions
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Solution for Random Effects

“Estimate” are the empirical Bayes estimates.

The “Std Err Pred” are the standard errors of (Ûj(Γ,T ) −Uj), which
are useful for statistical inference.

The “t Value” is for testing H0 : Uj = 0 versus Ha : Uj 6= 0.

To understand what’s in the SAS/MIXED manual, you need to know
about “Henderson’s Mixed Model” and “BLUP”.

lmer uses a version of Henderson’s Mixed Models.

. . . But first let’s look at the Ûoj ’s graphically. . .

C.J. Anderson (Illinois) Random Effects 25.25/ 85
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Empirical Distribution of Û0j’s

Estimated U_oj from Simple Model

Emprical Bayes Estimates of U_oj
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QQ plot with Hacked CIs
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In R

For code, see course web-site.

Standardize Residuals
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Effect of Micro Sample Size on Ûj:

N = 160, nj = 2, 5, 10, 100

C.J. Anderson (Illinois) Random Effects 29.29/ 85
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Effect of Micro Sample Size on Ûj:

N = 160, nj = 2, 5, 10, 100

C.J. Anderson (Illinois) Random Effects 30.30/ 85
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Effect of Macro Sample Size on Ûj:

nj = 10, N = 20, 50, 100, 500

C.J. Anderson (Illinois) Random Effects 31.31/ 85
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Effect of Macro Sample Size on Ûj:

nj = 10, N = 20, 50, 100, 500

C.J. Anderson (Illinois) Random Effects 32.32/ 85
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Effect of macro Sample Size on γ̂:

nj = 10, N = 20, 50, 100, 500

Marco sample Standard
size Effect Estimate Error

N=20 Intercept 12.5639 0.8847
x 2.0568 0.4254

N=50 Intercept 11.9190 0.5726
x 1.7124 0.2950

N=100 Intercept 12.1473 0.3691
x 2.2072 0.2032

N=500 Intercept 11.9521 0.1645
x 2.0185 0.0899
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Effect of micro Sample Size on γ̂:

N = 160, nj = 2, 5, 10, 100

Micro sample Standard
size Effect Estimate Error

nj = 2 Intercept 12.1021 0.4075
x 1.9392 0.3691

nj = 5 Intercept 12.0976 0.3398
x 1.6875 0.2330

nj = 10 Intercept 12.0318 0.4248
x 2.0809 0.3646

nj = 100 Intercept 11.9307 0.2447
x 1.9794 0.0479
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Summary: Effect of N and nj on Ûj & γ̂

Effect on shape of distribution of Ûj:

Increasing nj (micro) doesn’t have much of an effect.

Increasing N (macro) leads to more normal looking distribution.

Effect on confidence limits for Ûj (i.e. standard errors)

Increasing nj (micro) leads to smaller standard errors of Ûj

Increasing N (macro) doesn’t change the standard errors of Ûj .

Effect on parameter estimates (i.e.,γ’s): none

Effect on standard errors of parameters: Increase N or nj, standard
errors get smaller.

Why? Is there a differential effect?

C.J. Anderson (Illinois) Random Effects 35.35/ 85
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Effect of N and nj on s.e’s of γ’s

N nj n+ s.e.
20 10 300 Intercept 0.8847

x 0.4254
160 2 320 Intercept 0.4075

x 0.3691
50 10 500 Intercept 0.5726

x 0.2950
160 5 800 Intercept 0.3398

x 0.2330
100 10 1, 000 Intercept 0.3691

x 0.2032
160 10 1, 600 Intercept 0.4248

x 0.3646
500 10 5, 000 Intercept 0.1645

x 0.0899
160 100 16, 000 Intercept 0.2447

x 0.0479
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Choosing sample size for given power

All methods need some educated guesses regarding effects and variance
components.

There are 2 stand alone programs that can help:

PINT (Snijders & Bosker)
Optimal Design Plus Empirical Evidence: Documentation for the
“Optimal Design” Software. By Bloom, Congdon, Hill, Martinez,
Raudenbush.

Book that has lots of power with R, SAS and SPSS code to compute power
for many designs:

Liu, X.S. Statistical Power Analysis for the Social and Behavioral Sciences.

C.J. Anderson (Illinois) Random Effects 37.37/ 85
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Henderson’s Mixed-Model Equations

The equation
Ûj(Γ,T ) = TZ ′

jV
−1
j (yj −XjΓ)

was also derived by Henderson who used a system of linear equations
rather than Bayes Theorem.

He basically “stacks” the problem.

C.J. Anderson (Illinois) Random Effects 38.38/ 85
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Henderson’s Mixed-Model Equations

Staring with the linear mixed model,




y1

y2

...
yN




︸ ︷︷ ︸
y

=




X1

X2

...
XN




︸ ︷︷ ︸
X

Γ︸︷︷︸
Γ

+




Z1 0 . . . 0

0 Z2 . . . 0

...
...

. . .
...

0 0 . . . ZN




︸ ︷︷ ︸
Z




U1

U2

...
UN




︸ ︷︷ ︸
U

+




R1

R2

...
RN




︸ ︷︷ ︸
R

i.e., y = XΓ+ZU +R.

Given estimates of variance components T , estimates of U can be
obtained by solving the “mixed-model” equations for Γ and U ,

(
X ′

Σ
−1X X ′

Σ
−1Z

Z ′
Σ

−1X Z ′
Σ

−1Z + T−1

)(
Γ

U

)
=

(
X ′

Σ
−1y

Z−1
Σ

−1y

)
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Henderson’s Mixed-Model Equations

Note that the within and between covariance matrices are block diagonal

Σ =




σ2I1 0 . . . 0

0 σ2I2 . . . 0

...
...

. . .
...

0 0 . . . σ2IN


 and T =




T1 0 . . . 0

0 T2 . . . 0

...
...

. . .
...

0 0 . . . TN


 .
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Solution to Henderson’s Equations

Γ̂ =
(
X ′V̂ −1X ′

)
−1

X ′V̂ −1y

and
Û = TZ ′V̂ −1(y −XΓ̂)

which we’ve seen before.

Using Henderson’s approach is fine so long as you don’t have large
data sets (otherwise it’s computationally difficult).

In the SAS/MIXED documentation it is reported that Henderson’s
estimates are used....these are the same as the EB ones.

In practice, the more direct approach is more efficient. (i.e., equation
for Ûj given at the beginning of this section and under EB and the

equations previously given for. Γ̂ and T̂ in the notes on estimation).

C.J. Anderson (Illinois) Random Effects 41.41/ 85
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BLUP: Best Linear Unbiased Prediction

“Best” means a predictor or estimator is

Unbiased.

Has the smallest variance among all possible unbiased estimators (of
a particular form).

If the variance components are known,

Then the Bayes predictions of Uj are the Best Linear Unbaised Predictors
or “BLUP.”

But the variance components are not known. . .

C.J. Anderson (Illinois) Random Effects 42.42/ 85
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BLUP: Best Linear Unbiased Prediction

Since estimates of the variance components T̂ are used to estimate or
predict Yj , i.e.,

Ŷj = XΓ̂+ZÛj ,

The EB estimates of Uj are Empricial Best Linear Unbaised Predictors or
“EBLUP.”

This is related to what follows and has or interpretation of the EB
estimates of Uj.

C.J. Anderson (Illinois) Random Effects 43.43/ 85
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Shrinkage

1 Simple Model: Null/Empty

2 Example: HSB random intercept models with (cSES)ij.

3 Complex/General Model.

4 Example 2: More complex model.

C.J. Anderson (Illinois) Random Effects 44.44/ 85
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Shrinkage: Null/Empty Model

Yij = β0j +Rij

= γ00 + U0j +Rij

Using information from group j, the OLS estimates of β0j is

β̂0j = (1/nj)

nj∑

i=1

Yij = Ȳ.j

The group mean.
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Shrinkage: Null Model (continued)

If we used information from all the groups, we could estimate β0j as the
mean over populations (i.e., γ00); that is,

γ̂00 =

(
1∑
j nj

)
M∑

j=1

nj∑

i=1

Yij =

M∑

j=1

nj

M
Ȳ.j = Ȳ..

So we can estimate β0j using

Group information.

Information from all groups (population).

A combination of information.
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Optimal Estimator of β0j

The optimal (linear) combination (BLUP) is the empirical Bayes estimator
of β0j .

It is a weighted average.

β̂EB0j = λjβ̂0j + (1− λj)γ̂00

=

(
τ2o

τ20 + σ2/nj

)
β̂0j +

(
1−

τ2o
τ20 + σ2/nj

)
γ̂00

=

(
τ2o

τ20 + σ2/nj

)
Ȳ.j +

(
1−

τ2o
τ20 + σ2/nj

)
Ȳ..

=

(
1−

σ2/nj

τ20 + σ2/nj

)
Ȳ.j +

(
σ2/nj

τ20 + σ2/nj

)
Ȳ..
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Optimal Estimator of β0j (continued)

β̂EB0j = λj β̂0j + (1− λj)γ̂00 =

(
1−

σ2/nj

τ20 + σ2/nj

)
Ȳ.j +

(
σ2/nj

τ20 + σ2/nj

)
Ȳ..

The weights are both less than 1, so the EB estimate will be closer to the
overall mean than the OLS estimator of β0j .

Consider the extreme cases: τ20 = 0 and σ2 = 0.

This phenomenon is known as Shrinkage.

The model fitted values are “shrunken” toward the prior average (prior mean
of the random effects is ∼ 12.
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HSB Example of Shrinkage

Random intercept model with (cSES)ij .

Consider school 8367 where nj = 14.

The weight for the group data is

τ̂2o /(τ̂
2
o + σ̂2/nj) = 8.6071/(8.6071 + 37.0056/nj )

= .76

The weight for overall average regression is

1− τ̂2o /(τ̂
2
o + σ̂2/nj) = .23.
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HSB Example of Shrinkage (continued)

0 50 100 150

8
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18

Shrinkgage: HSB Math Predictions when cses=0

School ID

M
at

h

Grand Mean
Conditional, Y|Uoj
School Mean
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HSB Example of Shrinkage (continued)

The estimates of math from model conditioning on Uoj are
“shrunken” toward the prior average (i.e., Y++) where the prior mean
of the random effects is ∼ 12.

The variance of the estimates id U0j is less than (or equal) to the
data.

Simple Model Complex model

Model est. var(Ûoj) Model est var(Ûpj)

τ̂20 = 8.612 7.853 3.185 2.215
τ̂21 = 59.719 16.22
τ̂22 = 0.911 0.246
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Shrinkage for More General/Complex

Shrinkage also occurs in more complex models.

Instead of developing this in terms of β̂EB0j we can do it in terms of
predicted values of Yij. . .

Ŷij = β̂0j .

and Because I had to show it to myself . . .
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Shrinkage for More General/Complex

Ŷj = XjΓ̂+ZjÛj

= XjΓ̂+Zj(TZ ′

jV
−1
j )(yj −XjΓ̂)

= XjΓ̂−ZjTZ ′

jV
−1
j XjΓ̂+ZjTZ ′

jV
−1
j yj

= (Inj
−ZjTZ ′

jV
−1
j )XjΓ̂+ZjTZ ′

jV
−1
j yj

= (Inj
− (Vj − σ2Inj

)V −1
j )XjΓ̂+ (Vj − σ2Inj

)V −1
j yj

= (Inj
− Inj

+ σ2V −1
j )XjΓ̂+ (Inj

− σ2Inj
V −1
j )yj

= (σ2V −1
j )XjΓ̂+ (Inj

− σ2V −1
j )yj

C.J. Anderson (Illinois) Random Effects 53.53/ 85



Empirical Bayes Inference Henderson’s Mixed-Model Equations BLUP Shrinkage Normality Assumption Summary SAS/R

English translation

Ŷj = (σ2V −1
j )XjΓ̂+ (Inj

− σ2V −1
j )yj

Predictions of Yij are weighted combinations of

The overall/average population regression (i.e., XjΓ̂), and

The data from group j (i.e., yj).

Recall that that covariance matrix for Yj is

Vj = ZjTZ ′

j + σ2Inj
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Weights for Extreme Case: T = 0

Vj = σ2Inj
and V −1

j = (1/σ2)Inj

Weight for the overall average regression is

(σ2V −1
j ) = (σ2(1/σ2)Inj

) = Inj
,

Weight for group j data is

(Inj
− σ2V −1

j ) = (Inj
− Inj

) = 0

Predicted value of the response variable is

Ŷj = (σ2V −1
j )XjΓ̂+ (Inj

− σ2V −1
j )yj = XjΓ̂
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Weights for Extreme Case: σ2
= 0

Then Vj = ZjTZ ′

j + σ2Inj
= ZjTZ ′

j

Weight for the overall average regression is

(σ2V −1
j ) = 0,

Weight for the group j data is

(Inj
− σ2V −1

j ) = Inj

Predicted value of the response variable is

Ŷj = (σ2V −1
j )XjΓ̂+ (Inj

− σ2V −1
j )yj = yj
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Comments on Complex Case

Generally, the covariance matrix for the data is “in between” the two
extremes and the predictions are “shrunken” toward toward the priori
average regression (XjΓ).

This also implies that for any linear combination (say vector L),

var(L′Ûj) ≤ var(L′Uj)
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Shrinkage Example w/ Complex Model

HSB: The linear mixed model is

(math)ij = γ00 + γ10csesij + γ20(female)ij + γ30(minority)ij

+γ01(sector)j + γ02(size)j + γ03(SES)j

+γ11(sector)jcsesij + γ22(size)j(female)ij

+γ23(SES)j(female)ij + γ31(sector)j(minority)ij

+U0j + U1j(female)ij + U2j(minority)ij +Rij
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Shrinkage Example w/ Complex Model

The Mixed Procedure
Model Information

Data Set WORK.HSBCENT
Dependent Variable mathach
Covariance Structure Unstructured
Subject Effect id
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Convergence criteria met.
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Covariance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr Z

τ20 UN(1,1) id 2.2548 0.5011 4.50 < .0001
τ12 UN(2,1) id −0.9594 0.4375 −2.19 0.0283
τ22 UN(2,2) id 0.7119 0.5142 1.38 0.0831
τ13 UN(3,1) id −0.2327 0.5053 −0.46 0.6452
τ23 UN(3,2) id 0.2784 0.4685 0.59 0.5524
τ23 UN(3,3) id 0.9761 0.6943 1.41 0.0799
σ2 Residual 35.3860 0.6057 58.42 < .0001
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Covariance Parameter Estimates

Estimated from MIXED and computed variances and covariances (PROC
CORR) of the EB Ûj .:

Parameter PROC MIXED PROC CORR

intercept, intercept τ20 2.2548 var(U0j) 1.2829
female, intercept τ01 −0.9594 cov(U0j , U1j) −0.4490
female, female τ21 0.7119 var(U1j) 0.1971
minority, intercept τ02 −0.2327 cov(U0j , U2j) 0.0309
minority, female τ12 0.2784 cov(U1j , U2j) 0.0425
minority,minority τ22 0.9761 var(U2j) 0.1561

Residual σ2 35.3860 —

The covariances from PROC CORR are smaller (indicates shrinkage).
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Weight Matrices: School 8367

Lower triangle Overall average σ̂2V̂ −1
j and upper Group I − σ̂2V̂ −1

j

.95 * .04 .02 .03 .02 .04 .04 .03 .02 .02 .04 .02 .04 .02 .02
-.02 .98 * .01 .02 .01 .02 .02 .02 .01 .01 .02 .01 .02 .01 .01
-.03 -.02 .94 * .05 .02 .03 .03 .05 .02 .02 .03 .02 .03 .02 .02
-.02 -.01 -.02 .98 * .01 .02 .02 .02 .01 .01 .02 .01 .02 .01 .01
-.04 -.02 -.03 -.02 .95 * .04 .04 .03 .02 .02 .04 .02 .04 .02 .02
-.04 -.02 -.03 -.02 -.04 .95 * .04 .03 .02 .02 .04 .02 .04 .02 .02
-.03 -.02 -.05 -.02 -.03 -.03 .94 * .05 .02 .02 .03 .02 .03 .02 .02
-.02 -.01 -.02 -.01 -.02 -.02 -.02 .98 * .01 .01 .02 .01 .02 .01 .01
-.02 -.01 -.02 -.01 -.02 -.02 -.02 -.01 .98 * .01 .02 .01 .02 .01 .01
-.04 -.02 -.03 -.02 -.04 -.04 -.03 -.02 -. 02 . 95 * .04 .02 .04 .02 .02
-.02 -.01 -.02 -.01 -.02 -.02 -.02 -.01 .-01 -.02 .98 * .01 .02 .01 .01
-.04 -.02 -.03 -.02 -.04 -.04 -.03 -.02 .-02 -.04 -.02 .95 * .04 .02 .02
-.02 -.01 -.02 -.01 -.02 -.02 -.02 -.01 .-01 -.02 -.01 -.02 .98 * .01 .01
-.02 -.01 -.02 -.01 -.02 -.02 -.02 -.01 .-01 -.02 -.01 -.02 -.01 . 98 * .01

Overall being given more weight.
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Normality Assumption: Random Effects

Using Ûj is to examine the assumption of normality for the random effects.

Problem Even when the linear mixed model is correctly specified, the
distribution of the Uj ’s are all different unless all groups have the
same Xj and Zj .

Solution: Standardize the Ûj’s,

Û∗

j =
Ûj

ŝ.e.j

And then examine for normality.. . .
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HSB: stdU = Û ∗0j/Ŝ.E.j w/ (cSESij)
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Normality: Problem of Shrinkage

Problem: Due to shrinkage, Ûj ’s show less variability than is actually
present in the population of random effects.

Plots of Ûj and Û∗

j do not necessarily reflect the actual distri-
bution of the random effects.

The EB estimates of Uj are very dependent on their assumed prior
distribution.
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Impact of Non-normality

How sensitive are Ûj to the normality assumption?

Study by Verbeke & Molenberghs, which I ran (out of curiosity and to
show you too):

1 Simulate samples from a population with 1000 marco units where
each macro unit had 5 observations (i.e., nj = 5) where the random
effects followed a mixture of two normal distributions,

U0j ∼

[
1

2
N (−2, 1) +

1

2
N (2, 1)

]
.
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Simulated Distribution for U0j
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Impact of Non-normality

2 Using the simulated U0j ’s, simulate yij’s according to

yij = U0j +Rij

with Rij ∼ N (0, σ2) where I used σ2 = 1, 9, 25 and 100.

3 Fit random intercept model to the simulated data.

4 Examine the resulting distribution of the Û0j ’s.
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Distributions for Û0j (Note: τ̂ 20 ∼ 5)
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Impact of Non-Normality

Both σ2 and τ20 influence the shape of the distribution of Ûoj:

If σ2 is large relative to τ20 ,

ρI =
τ20

σ2 + τ20

is small and it’s difficult to detect sub-group in the random effects.
That is sub-groups in the population are difficult to recognize.

If a model includes random slopes, it will be easier to detect
subgroups in the random effects.
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Impact of Non-Normality: In class study

R function simdata (on course web-site) to show impact of non-normal Uoj

(in particular, mixture of two normal distributions).
Try Changing:

Distribution of Uoj (i.e., change mixing weights, “cut”).
Values of σ2 and τ2 (i.e., ICC).
Distance between the two distributions.
N (number of clusters/groups), nj (number per group).

What happens to

Distribution of data, Yij?
Distribution of Û0j estimated from lmer?
Parameter estimates for fixed effects?
Estimated se for the fixed effects (model based & robust)?
Results of hypothesis tests for fixed effects?
Estimated variances?
Anything else?
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Non-Normality & Marginal Model

Based on a number of simulation studies (by others), the wrong
distributional assumption for Uj,

Has little effect on the Γ̂ and T̂ . (yeah)

Effects the estimated standard errors of Γ̂ and T̂ . (boo)

Estimated standard errors for Γ̂ are generally pretty close to the robust
ones. (yeah)

Estimated standard errors for T̂ can be really bad. The uncorrected
s.e.’s could be 5 times too large or 3 times too small.

But we generally don’t use s.e.’s to test whether τ2k = 0, so this result
is not too critical for valid tests of such hypotheses. . .

How would/could you test this hypothesis?
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Checking the Normality Assumption

The EB’s estimates of Uj depend heavily on the distribution
assumption for them.

Best way to check for non-normality?

Compare Ûj obtained assuming normality to model with those
obtained from relaxing the normality assumption.

Alternative distributional assumption for Uj ’s is a mixture of a number
of (multivariate) normal’s,

Uj ∼

g∑

r=1

prN (µr,T )
where

∑
k pr = 1.

Maybe a Gamma distribution (e.g., skewed distribution −→ reaction
times). . . But this would be for Yij .
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Alternative Distribution for Ujs

A mixture of (multivariate) normals would be found if

There is unobserved heterogeneity in the population.. . . pr represents
a cluster of the total population.

You have not included a categorical variable that’s important.

Such a mixture of normals implies a range of possible non-normal
distributions for Uj’s.

For examples, see Verbeke & Molenberghs (page 90).
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Take Away Points

The estimates of Uj are from analytic derivation using Bayes
Theorem (if using MLE or REML).

Estimates of Ujs are a function of yij, γ̂s, τ̂s and σ̂2.

Increase nj increases the precision of the estimate of Uj.

Increase N has minimal impact on precision of the estimate of Ujs.

See Page 89.

Choosing sample size for given power (resources given but not
illustrated).
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Take Away Points

Shrinkage (a property of Bayesian estimates).

We assume the Ujs are normally distributed; however,

If Ûjs are approximately normal, then the normality assumption maybe
OK. It’s tenable, but definitely not “proven”.
If Ûjs are not approximately normal, then the normality assumption is
violated.
If normality assumption is violated, try another distribution (perhaps
mixture of normals).
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SAS PROC MIXED Options

Options to produce predictions and estimates of the random effects, as
well as a little data manipulation:

PROC MIXED data=hsbcent noclprint covtest method=ML ic;
CLASS id;
MODEL mathach = cSES
/solution outpred=HSBpred outpredm=hsbpm;
RANDOM intercept / subject=id type=un solution cl;
ODS output SolutionR=RanUs;
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Data Steps

DATA tmp99;
SET hsbpred;
predij=pred;
residij=residual;
lowij=lower;
upij= upper;
stdij=StdErrPred;
KEEP predij residij lowij upij stdij id;

PROC SORT data=tmp99;
by id;

PROC SORT data=hsbpm;
by id;
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How to Do this in R

Estimated Random Intercepts

Uoj
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Estimated Random cSES Effects
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Estimated Random Female Effects
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mathach ~ 1 +cSES +female +meanses
+(1+cSES+female|id)

Deviance=46494.5
AIC=46516.5
tau_00 = 3.18
tau_11 = 0.60
tau_22 = 0.91
sigma2 = 36.36
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R

Example using HSB data:

model.3 ← lmer(mathach ∼ 1 + xycSES + female

+ meanses + (1 + xycSES + female | id),
data=hsb, REML=FALSE)

U ← as.data.frame(ranef(model.3))

Uoj ← U[which(U$term=="(Intercept)"),]
U1j ← U[which(U$term=="xyses"),]
U2j ← U[which(U$term=="female"),]

par(mfrow=c(2,2))

hist(Uoj$condval, main="Estimated Random

Intercepts",xlab="Intercept (male)")

hist(U1j$condval, main="Estimated Random cSES

Effects",xlab="cSES/10")

hist(U2j$condval, main="Estimated Random Female

Effects",xlab="female")
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R

# and (add some information in the empty plot)

x ← seq(0:10)

y ← seq(0:10)

plot(x,y,type="n",axes=FALSE,ylab="",xlab="")

text(6.1,10,"mathach 1 +cSES +female +meanses")

text(6.4,9,"+(1+cSES+female|id)")

text(3.3,8,"Deviance=46494.5")

text(3,7,"AIC=46516.5")

text(3,6,"tau00 = 3.18”)
text(3.6,5,"Variance for cses...")

text(3,4,"tau11 = 1.49”)
text(3,3,"tau22 = 0.91”)
text(3.1,2,"sigma2 = 36.36")
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More Graphics

See R on course web-site for how to do the following two figures. . . .
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Scatter Plots of Ûjs
Estimated Random Effects

Scatter Plot Matrix
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QQ plots of random effects
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mathach ~ 1 +cSES +female +meanses
+(1+cSES+female|id)

Deviance=46494.5
AIC=46516.5
tau_00 = 3.18
Variance for cses...
tau_11 = 1.49
tau_22 = 0.91

sigma^2=36.36
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Sign of Problem: QQ plots of random effects
Estimated Random Effects

Scatter Plot Matrix
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