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Outline

Inference for fixed effects.

Inference for variance components.

Global measures of fit.

Computer Lab 3

Reading: Snijders & Bosker, Chapter 6
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Inference for Fixed Effects

Goal: Make inferences about model parameters and make generalizations
from a specific sample to the population from which the sample was
selected.

Approximate Wald tests (z tests).

Approximate t and F tests.

Robust estimation.

Likelihood ratio tests.
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Approximate Wald Tests

Need the sampling distribution of the fixed parameter estimates,
Γ̂ = (γ̂00, γ̂01, . . .)

′.

The asymptotic sampling distribution of Γ̂ is

Γ̂ ∼ N
(
Γ, cov(Γ̂)

)
where Γ̂ =




N∑

j=1

X ′

jV̂
−1
j Xj




−1
N∑

j=1

X ′

jV̂
−1
j yj

where V̂j is the estimated covariance matrix of Yj , which equals

V̂j = ZjT̂Z ′

j + σ̂2I

Our estimate of Γ depends on T̂ and σ̂2.
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Covariance Matrix of Γ̂

To get an estimate of Γ̂:

IF

The model for the mean of Yj is correctly specified,

(i.e., XjΓ) so E(Γ̂) = Γ (i.e, unbiased).

The marginal covariance matrix is correctly specified,
(i.e., Vj = ZjTZ ′

j + σ2I) so the covariance matrix of data equals the
predicted covariance matrix.
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Covariance Matrix of Γ̂

THEN

ĉov(Γ̂) =




N∑

j=1

X ′

jV̂
−1
j Xj




−1

= (X ′V̂ −1X)−1

where

X =




X1

X2
...

XN


 and V =




V1 0 . . . 0

0 V2 . . . 0

...
...

. . .
...

0 0 . . . VN




We can now use the fact Γ̂ ∼ N
(
Γ, cov(Γ̂)

)
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Digression: Distribution of Γ̂

Since Y ∼ N (XΓ,ΣY ) and

Γ̂ =




N∑

j=1

X ′

jV̂
−1
j Xj




−1
N∑

j=1

X ′

jV̂
−1
j yj

= (X ′V̂ −1X)−1X ′V̂ −1

︸ ︷︷ ︸y

= A y

The Expected value,

E(Γ̂) = E[(X ′V̂ −1X)−1X ′V̂ −1)Y ]

= (X ′V̂ −1X)−1X ′V̂ −1E[(XΓ+ ǫ)]

= (X ′V̂ −1X)−1(X ′V̂ −1X)E[(Γ+ ǫ)]

= Γ
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Distribution of Γ̂ (continued)

Covariance matrix,

cov(Γ̂) = AV A′

= [(X ′V −1X)−1X ′V −1]

V︷︸︸︷
ΣY

[
V −1

︸ ︷︷ ︸
I

X(X ′V −1X)−1
]

= (X ′V −1X)−1 X ′V −1X(X ′V −1X)−1

︸ ︷︷ ︸
I

= (X ′V −1X)−1

Since Γ̂ is a linear function of a vector of normal random variables
(i.e., Y ), Γ̂ is normal.

So Γ̂ ∼ N (Γ, (X ′V −1X)−1)
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Approximate Wald Tests

Perform statistical hypothesis tests on

One γ, e.g.,
Ho : γ01 = 0 versus Ho : γ01 6= 0

Multiple γ’s, including contrasts, e.g.,

Ho : LΓ = 0 versus Ha : LΓ 6= 0

Form confidence intervals for parameters.
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One Fixed Effect

Sampling distribution for one fixed effect,

γ̂kl ∼ N (γkl, var(γ̂kl))

Statistical Hypothesis:

Ho : γkl = γ∗kl versus Ha : γkl 6= γ∗kl.

Note:

Usually, γ∗kl = 0

Can do directional tests, i.e.,

Ha : γkl > γ∗kl or Ha : γkl < γ∗kl

Test statistic and approximate sampling distribution:

z =
γ̂kl − γ∗kl

ŜE
∼ N (0, 1) or z2 ∼ χ2

1
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Wald Test: Example

HSB — a really complex model

Level 1:

(math)ij = β0j + β1j(cSES)ij + β2j(female)ij + β3j(minority)ij +Rij

Level 2:

β0j = γ00 + γ01(sector)j + γ02(size)j + γ03(SES)j + U0j

β1j = γ10 + γ11(sector)j + γ12(size)j + U1j

β2j = γ20 + γ21(sector)j + γ22(size)j + γ23(SES)j + U2j

β3j = γ30 + γ31(sector)j + γ32(size)j + γ33(SES)j + U3j
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HSB: Linear Mixed Model

(math)ij = [γ00 + γ01(sector)j + γ02(size)j + γ03(SES)j ]

+[γ10 + γ11(sector)j + γ12(size)j ](cSES)ij

+[γ20 + γ21(sector)j + γ22(size)j + γ23(SES)j ](female)ij

+[γ30 + γ31(sector)j + γ32(size)j + γ33(SES)j ](minority)ij

+U0j + Uij(cSES)ij + U2j(female)ij + U3j(minority)ij +Rij

= γ00 + γ10(cSES)ij + γ20(female)ij + γ30(minority)ij

+γ01(sector)j + γ02(size)j + γ03(SES)j

+γ11(sector)j(cSES)ij + γ12(size)j(cSES)ij

+γ21(sector)j(female)ij + γ22(size)j(female)ij

+γ23(SES)j(female)ij + γ31(sector)j(minority)ij

+γ32(size)j(minority)ij + γ33(SES)j(minority)ij

+U0j + U1j(cSES)ij + U2j(female)ij + U3j(minority)ij +Rij
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HSB: SAS/MIXED Input

PROC MIXED data=hsbcent noclprint covtest method=ML ic;
CLASS id;
MODEL mathach = cSES female minority meanSES size sector

cSES*size cSES*sector female*meanSES female*size
female*sector minority*meanSES minority*size minority*sector
/solution chisq;

RANDOM intercept female minority cSES / subject=id type=un;
RUN;
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SAS/MIXED & Wald Tests

To get the Wald test statistic and p-values, you need to specify the
“chisq” option in the model statement.

The null hypothesis is

Ho : γkl = 0 versus Ha : γkl 6= 0.

It gives you “chi-square” (i.e., z2), so if you want to do a one-tailed
test or use a different value in the null hypothesis, you need to
compute z by hand.
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Solution for Fixed Effects from SAS

Effect Estimate se DF Wald p
Intercept 12.0260 0.4691
cses 2.2823 0.3111 1 53.81 < .0001 *
female −0.3402 0.4637 1 0.54 0.4632
minority −4.2068 0.6714 1 39.26 < .0001 *
meanses 4.2207 0.5003 1 71.17 < .0001 *
size 0.001125 .000314 1 12.86 0.0003 *
sector 1.7360 0.4173 1 17.31 < .0001 *
cses*size 0.000032 .000203 1 0.03 0.8728
cses*sector −1.0033 0.2528 1 15.74 < .0001 *
female*meanses −0.03207 0.4838 1 0.00 0.9471
female*size −0.00070 .000304 1 5.36 0.0206 *
female*sector −0.3006 0.4284 1 0.49 0.4829
minority*meanses −0.7793 0.5391 1 2.09 0.1483
minority*size 0.000183 .000398 1 0.21 0.6446
minority*sector 2.1189 0.5430 1 15.23 < .0001 *
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R & Wald Tests

We just use the fact that

Wald = t21 =
γ̂jk

2

var(γ̂jk)
∼ χ2

1

In the output (if you’re using lmerTest), you will get t, so just square this.

s4 ← summary(model4)

s4 ← as.data.frame(s4[10])

names(s4) ← c("Estimate","StdError","df t","t","Pr(> |t|)")
s4$df.Wald ← rep(1,nrow(s4))

s4$Wald4 ← s4$t**2
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R & Wald Tests

For output that looks reasonable (for the most part), use the xtable
package and

options(scipen = 999) # Turns off scientific notationn

print(s4, type = ‘‘html’’,digits=2)

options(scipen = 0) # Turns scientific notation back on

Note print is quirky. digits=2 actually gave me 3 digits.
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R & Wald Tests

Estimate StdError df Wald p
(Intercept) 12.026 0.469

female -0.340 0.464 1.000 0.538 .465
minority -4.206 0.671 1.000 39.252 0.000

cses 2.282 0.311 1.000 53.793 0.000
meanses 4.220 0.500 1.000 71.139 0.000

zsize 0.680 0.190 1.000 12.859 0.000
sector 1.736 0.417 1.000 17.304 0.000

cses:zsize 0.020 0.123 1.000 0.026 0.873
cses:sector -1.003 0.253 1.000 15.739 0.000

female:meanses -0.031 0.484 1.000 0.004 0.948
female:zsize -0.425 0.184 1.000 5.357 0.022

female:sector -0.301 0.428 1.000 0.492 0.484
minority:meanses -0.779 0.539 1.000 2.091 0.151

minority:zsize 0.111 0.240 1.000 0.212 0.646
minority:sector 2.119 0.543 1.000 15.231 0.000
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Confidence Intervals for γkl’s

Given the estimated standard errors and fixed effects, we can construct
(1− α)100% confidence intervals for γkl’s:

γ̂kl ± zα/2ŜE

For example, a 95% confidence interval for γ10, the coefficient for
(cSES)ij , is

2.2823 ± 1.96(0.3111) −→ (1.67, 2.89)
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R & Wald Confidence Intervals for γkl’s

Since we have s4, the summary of model 4 as an object, we can use
information to compute confidence intervals. Below is code for 95%
intervals

names(s4) # check names of things

s4$upper ← s4$Estimate - qnorm(.025)*s4$StdError
s4$lower ← s4$Estimate - qnorm(.975)*s4$StdError
s4

round(s4[,8:9],digits=2)

Note: Later we’ll look at methods that use alternative methods to
estimate confidence intervals
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R & Wald confidence Intervals for γkl’s from R

lower upper
(Intercept) 11.11 12.95
female -1.25 0.57
minority -5.52 -2.89
cses 1.67 2.89
meanses 3.24 5.20
zsize 0.31 1.05
sector 0.92 2.55
cses:zsize -0.22 0.26
cses:sector -1.50 -0.51
female:meanses -0.98 0.92
female:zsize -0.79 -0.07
female:sector -1.14 0.54
minority:meanses -1.84 0.28
minority:zsize -0.36 0.58
minority:sector 1.05 3.18
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General Tests on Fixed Effects

We may want to

Simultaneously test a set of γ’s.

Consider whether to drop multiple effects from the model all at once.

For discrete variables where you’ve entered effect or dummy codes for
the levels of the variable (rather than using the CLASS statement and
in SAS or as.factor( ) in R which create dummy codes).

One or more contrasts of γ’s (e.g., to test whether some γ’s are
equal).
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General Tests on Fixed Effects

For the general case, tests are based on the fact

Γ̂ ∼ N
(
Γ, cov(Γ̂)

)

Hypotheses are in the form of

Ho : LΓ = 0 versus Ha : LΓ 6= 0

where L is an (c× p) matrix of constants that define the hypothesis tests.

In Scaler From:

Ho(1) :

p∑

k=1

l1kγk = 0, Ho(2) :

p∑

k=1

l2kγk = 0, . . . Ho(c)

lrk = a constant in the rth row and kth column of matrix L.
c = number of hypothesis tests (rows of L).
p =number parameters for fixed effects (elements in Γ).
c ≤ p.
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General Test Statistic

Γ̂
′L′


L




N∑

j=1

X ′

jV̂
−1
j Xj




−1

L′



−1

︸ ︷︷ ︸

LΓ̂

covariance matrix of LΓ̂

and asymptotically follows a χ2 distribution with df = c, the number of
rows in L (i.e., the rank of L).

I won’t make you compute this by hand. . . Let SAS or R do the busy-work.
In R, use the function contrast that I wrote.
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HSB: General Test Statistic

In our example Γ is a (15× 1) vector:

Γ
′ = (γ00, γ10, γ20, γ30, γ01, γ02, γ03, γ11, γ12, γ21, γ22, γ23, γ31, γ32, γ33)

From the Wald tests, we found that the following cross-level interactions
were not significant:

Interaction Parameter Interaction Parameter
(size)j(cSES)ij γ12 (size)j(minority)ij γ32
(sector)j(female)ij γ21 (SES)j(minority)ij γ33
(SES)j(female)ij γ23
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Simultaneously Testing γrk’s

We can simultaneously test all of these cross-level interactions by defining
(5× 15) matrix,

Γ
′ = ( γ00 γ10 γ20 γ30 γ01 γ02 γ03 γ11 γ12 γ21 γ22 γ23 γ31 γ32 γ33 )

L =




0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



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Simultaneously Testing Cross-Level

Statistical hypotheses are

Ho : LΓ =




γ12
γ21
γ23
γ32
γ33




=




0
0
0
0
0




vs Ha : LΓ 6=




0
0
0
0
0



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SAS/MIXED for Simultaneous Tests

CONTRAST ’Cross-level interactions’
cSES*size 1 ,
female*meanSES 1 ,
female*sector 1 ,
minority*meanSES 1 ,
minority*size 1 / chisq;

“CONTRAST” statement specifies the effect that you want to test.

We only need to enter a single value because each of these interactions has
only a single parameter estimated.

SAS/MIXED Output:
Contrasts

Label DF Chi-Square Pr>ChiSq

Cross-level interactions 5 2.97 0.7048
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SAS/MIXED Contrast Statement

If a variable has 5 levels. For example, hours watching TV from the
TIMSS data set used in lab where it is entered as a nominal variable.
To test whether levels the differences between levels 1, 2, 3, and 4 are
different:

CONTRAST ’Any differences between levels 1 to 4? ’
hours computer games 1 -1 0 0 0,
hours computer games 1 0 -1 0 0,
hours computer games 1 0 0 -1 0;

If you want to test whether the average of 1 –4 is different from level 5:

CONTRAST ’Level 1–4 versus level 5’
hours computer games 1 1 1 1 -4;

You can have multiple contrast statements.
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SAS/MIXED Input

The CONTRAST statement only gives the test statistic, df and
p-value.

The ESTIMATE statement is exactly like CONTRAST, except

Can only enter 1 row of L.

Output includes LΓ̂ and it’s the S.E. of LΓ̂, as well as the df , test
statistics and p-value.
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Contrasts in R

I couldn’t figure out how to do them in R (at least like what’s on
previous pages so I wrote a function, “contrast”)

Include a source command, e.g.,
source("All .txt")

Create L that has rows as tests/constrasts and columns correspond
to fixed effects. Talk about requirements for L in class.

contrast(model, L)

Returns table with F, numerator df, a guess at denomonator df, Wald
X2, df, and p-value for Wald. At a later date, I will add options for
denominator df for the F test.
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Contrasts in R

cmodel <- lmer(mathach 1 + cses + female + minority +

meanses + sdsize + sector + cses*sdsize + cses*sector +

female*meanses + female*sdsize + female*sector +

minority*meanses + minority*sdsize + minority*sector + (1 +

cses + female | id), data=hsb, REML=FALSE)

L <- matrix(0,nrow=5,ncol=15)

L[5,14] <- 1

L[4,13] <- 1

L[3,11] <- 1

L[2,10] <- 1

L[1, 8] <- 1

round(contrast(cmodel, L), digits=2)
F num df den df p-value X2 df p-chisquare

1.73 5.00 156.14 0.13 8.66 5.00 0.12
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Problem With Wald Tests

The estimated standard errors used in the Wald tests do not take into
account the variability introduced by estimating the variance components.

The the estimated standard errors are too small −→ Wald tests are a bit
too “liberal” (i.e., the p–values are too small).

Solution: Use approximate t– and F– statistics.
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Approximate t-tests and F -tests

For hypothesis tests and/or confidence intervals for a single γ, use
Students t–distribution instead of the standard normal.

The test statistic is still
γ̂kl − γ∗kl

ŜE

But it is compared to a t−distribution where the degrees of freedom are
estimated from the data.
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Example: Approximate t-tests

Effect Estimate se DF t Pr> |t|
Intercept 12.0260 0.4691 155 25.63 < .0001
cses 2.2823 0.3111 157 7.34 < .0001
female −0.3402 0.4637 121 −0.73 0.4646
minority −4.2068 0.6714 133 −6.27 < .0001
meanses 4.2207 0.5003 6604 8.44 < .0001
size 0.001125 0.000314 6604 3.59 0.0003
sector 1.7360 0.4173 6604 4.16 < .0001
cses*size 0.000032 0.000203 6604 0.16 0.8729
cses*sector −1.0033 0.2528 6604 −3.97 < .0001
female*meanses −0.03207 0.4838 6604 −0.07 0.9471
female*size −0.00070 0.000304 6604 −2.31 0.0207
female*sector −0.3006 0.4284 6604 −0.70 0.4829
minority*meanses −0.7793 0.5391 6604 −1.45 0.1484
minority*size 0.000183 0.000398 6604 0.46 0.6446
minority*sector 2.1189 0.5430 6604 3.90 < .0001
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Approximate F -tests

For multiple tests and/or contrasts performed simultaneously, use the
F−statistic

F =

Γ̂
′L′

[
L
(∑N

j=1X
′

jV̂
−1
j Xj

)
−1

L′

]
−1

LΓ̂

c

which is compared to an F distribution where the numerator degrees of
freedom equals c (i.e., rank of L, number of tests/contrasts performed;
that is, the number of rows in L). The denominator df are estimated from
the data.
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Degrees of Freedom

There are 6 options in SAS/MIXED for determining the degrees of
freedom which will be used in tests for fixed effects produced by MODEL,
CONTRAST and ESTIMATE statements (and LSMEANS, which we
haven’t talked about).

The options are:

ddf= value. You specify your own value.

ddfm=contain. This is the “containment” method and it is the
default when you have a RANDOM statement.
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Degrees of Freedom (continued)

ddfm=residual. This equals n+− (number of parameters estimated).

ddfm=betwithin. This is the default when you have a REPEATED
statement and recommended instead of contain when the Zj matrices
have a large number of columns.

The residual degrees of freedom are divided into a between-group and
within-group part.

If the fixed effect changes within a group, df is set equal to the
within-group portion.

If the fixed effect does not change within a group (i.e., a macro level
variable), SAS sets df equal to the between-group portion.
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Degrees of Freedom (continued)

ddfm=satterth. General Satterthwaite approximation; based on the
data. Works well with moderate to large samples; small sample
properties unknown.

ddfm=kenwardroger. Based on the data. It adjusts estimated
covariance matrix for the fixed and random effects and then computes
Satterthwaite approximation.
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Simulated: N = 160, nj = 10, n+ = 1600, & p = 3

ddfm= Effect Estimate s.e. DF t Pr > |t|
Contain Intercept 12.0368 .2753 158 43.72 < .01

x 1.9930 .1584 1439 12.58 < .01
z 3.1423 .2804 1439 11.20 < .01

Residual Intercept 12.0368 .2753 1597 43.72 < .01
x 1.9930 .1584 1597 12.58 < .01
z 3.1423 .2804 1597 11.20 < .01

Betwithin Intercept 12.0368 .2753 158 43.72 < .01
x 1.9930 .1584 1439 12.58 < .01
z 3.1423 .2804 158 11.20 < .01

Satterh Intercept 12.0368 .2753 160 43.72 < .01
x 1.9930 .1584 1543 12.58 < .01
z 3.1423 .2804 160 11.20 < .00

Kenward- Intercept 12.0368 .2753 160 43.72 < .01
Rogers x 1.9930 .1585 1543 12.58 < .01

z 3.1423 .2804 160 11.20 < .01
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Example: SAS Input for HSB

PROC MIXED data=hsbcent noclprint covtest method=ML;

CLASS id;

MODEL mathach = cSES female minority meanSES size sector
cSES*size cSES*sector female*meanSES female*size
female*sector minority*meanSES minority*size minority*sector

/ solution chisq ddfM=satterth cl alpha=.01 ;

RANDOM intercept female minority cSES / subject=id type=un;

CONTRAST ’Cross-level interactions’
cSES*size 1,
female*meanSES 1,
female*sector 1,
minority*meanSES 1,
minority*size 1 / chisq ddfm=satterth;
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Output: Model Information

Data Set WORK.HSBCENT
Dependent Variable mathach
Covariance Structure Unstructured
Subject Effect id
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite
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Output: Solution for Fixed Effects

Effect Estimate se DF t Pr > |t|
Intercept 12.0260 0.4691 139 25.63 < .0001
cses 2.2823 0.3111 148 7.34 < .0001
female −0.3402 0.4637 123 −0.73 0.4646
minority −4.2068 0.6714 157 −6.27 < .0001
meanses 4.2207 0.5003 182 8.44 < .0001
size 0.001125 0.000314 156 3.59 0.0004
sector 1.7360 0.4173 134 4.16 < .0001
cses*size 0.000032 0.000203 155 0.16 0.8731
cses*sector −1.0033 0.2528 148 −3.97 0.0001
female*meanses −0.03207 0.4838 166 −0.07 0.9472
female*size −0.00070 0.000304 133 −2.31 0.0222
female*sector −0.3006 0.4284 143 −0.70 0.4840
minority*meanses −0.7793 0.5391 120 −1.45 0.1509
minority*size 0.000183 0.000398 142 0.46 0.6453
minority*sector 2.1189 0.5430 133 3.90 0.0002
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Output: Type 3 Tests of Fixed Effects

Num Den Chi-
Effect DF DF Square F Value Pr > ChiSq Pr> F
cses 1 148 53.81 53.81 < .0001 < .0001
female 1 123 0.54 0.54 0.4632 0.4646
minority 1 157 39.26 39.26 < .0001 < .0001
meanses 1 182 71.17 71.17 < .0001 < .0001
size 1 156 12.86 12.86 0.0003 0.0004
sector 1 134 17.31 17.31 < .0001 < .0001
cses*size 1 155 0.03 0.03 0.8728 0.8731
cses*sector 1 148 15.74 15.74 < .0001 0.0001
female*meanses 1 166 0.00 0.00 0.9471 0.9472
female*size 1 133 5.36 5.36 0.0206 0.0222
female*sector 1 143 0.49 0.49 0.4829 0.4840
minority*meanses 1 120 2.09 2.09 0.1483 0.1509
minority*size 1 142 0.21 0.21 0.6446 0.6453
minority*sector 1 133 15.23 15.23 < .0001 0.0002
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Output: 99% Confidence Limits

Produced by the “cl alpha=.01”option in the MODEL statement.
Used the t-distribution with Satterthwaite df .

Effect Lower Upper
cses 1.4710 3.0936
female −1.5537 0.8734
minority −5.9614 −2.4521
meanses 2.9316 5.5098
size 0.000317 0.001933
sector 0.6608 2.8112
cses*size −0.00049 0.000555
cses*sector −1.6548 −0.3518
female*meanses −1.2785 1.2144
female*size −0.00149 0.000080
female*sector −1.4044 0.8032
minority*meanses −2.1683 0.6098
minority*size −0.00084 0.001208
minority*sector 0.7199 3.5179
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For R Users

Use the lmerTest package. The lmerTest pckage gives Sattherwaite
degrees of freedom and p-values for testing γkℓ = 0.

There is a package that gives Kenward-Rogers.

Alternatively you can compute confidence intervals using bootstrap,
which completely avoids deciding on degrees of freedom. However,
this can take a very long time for complex models. I illustrate it using
a simpler one

model1 <- lmer(matach ∼ 1 + cses + female + minority

+ meanses + sdsize + sector +

(1 | id), data=hsb, REML=FALSE)

confint(model1, method=‘boot’, nsim=1000, level=0.99)
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Results for bootstrap

2.5 % 97.5 %√
τ20 .sig01 1.0155 1.4559√
σ2 .sigma 5.8930 6.0834

(Intercept) 11.7390 13.1435
cses 1.7063 2.1080
female -1.5455 -0.9280
minority -3.2955 -2.4970
meanses 3.2806 4.6013
zsize 0.1380 0.6793
sector 1.5392 2.7345

Alternatively, you can use profile likelihood to get confidence intervals, which
doesn’t take as long:

profile.ci ← confint(model1, nsim=1000, level=0.99)

round(profile.ci, digits=4)
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Robust estimation: Why?

When sample sizes are small, the Wald and F -tests can lead to
different results. (HSB example: Large sample so differences were
minor).

If the random part of the model is wrong (i.e., non-normal data),
then Wald and F -tests are not valid.

Recall that the Wald and F (& t) tests require:

The model for the mean of Yj is correctly specified, (i.e., XjΓ) so that

E(Γ̂) = Γ (i.e, unbiased).

The marginal covariance matrix is correctly specified, (i.e.,
Vj = ZjTZ ′

j + σ2I) so that the covariance matrix of the data equals
the predicted covariance matrix.
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Robust Estimation: What?

Problem: If the random part of the model is wrong, then the results
of Wald and F -tests are not valid.

Possible Solutions:

Jackknife is OK but not as efficient as . . .

Bootstrap is computationally intense (e.g., R took a long time).

“Sandwich estimator” of the covariance matrix (Huber, 1967; White,
1982; see also Liang & Zeger, 1986).
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Sandwich Estimator

Uses the covariance matrices of the total residuals (i.e., total residuals
= yj −XjΓ̂) rather than the covariance matrices of the data (i.e.,
the Yj ’s).

The sandwich estimator is also called the “robust” or the “empirical”
variance estimator.

It is consistent so long as the mean is correctly specified.
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More Specially What It Is

Recall (page 9),

cov(Γ̂) =
[
(X ′V −1X)−1

]
X ′V −1

ΣY V −1X
[
(X ′V −1X)−1

]

= M ′
ΣY M

Replace ΣY with
(y −XΓ̂)(y −XΓ̂)′,

which is a block diagonal matrix with (yj −XjΓ̂)(yj −XjΓ̂)
′ on the

diagonal.
The Sandwich estimator is consistent even if data are not normal (i.e.,
when model based one is inaccurate and inconsistent).
If assumptions are met, Model Based estimator is more efficient.
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Implications for practice

Extreme point of view:
If you’re only interested in the average (mean structure) in your data, then

Ignore the within group dependency and use ordinary least squares to
estimate the regression model.

For inference, use the sandwich estimator, which corrects for within
group dependency.

Appropriate covariance model helps:

Interpretation and explanation of the random variation in the data.

Improved efficiency (good for statistical inference).

In longitudinal data analysis with missing data, the sandwich
estimator is only appropriate if observations are missing at random.
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Simulation

Correct Model
model
based sandwich

Parm est se est se
Random effects
τ00 0.8201 0.8201
τ10 -0.1018 -0.1018
τ11 0.8581 0.8581
τ20 -0.1563 -0.1563
τ21 0.1157 0.1157
τ22 1.1409 1.1409
σ2 3.9115 3.9115

Fixed effects
γ00 5.1656 0.1141 5.1656 0.1141
γ10 2.0524 0.0960 2.0524 0.0960
γ20 3.0058 0.1086 3.0058 0.1086
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Simulation

Correct Model Wrong Model
model model
based based sandwich

Effect est se est se est se
Random effects
τ00 0.8201 0.5352 0.5352
τ10 -0.1018 -0.0477 -0.0477
τ11 0.8581 0.8055 0.8055
τ20 -0.1563
τ21 0.1157
τ22 1.1409
σ2 3.9115 21.0821 21.0821

Fixed effects
γ00 5.1656 0.1141 5.0903 0.1686 5.0903 0.1668
γ10 2.0524 0.0960 2.0112 0.1035 2.0112 0.1035
γ20 3.0058 0.1086 3.1108 0.0387 3.1108 0.1148
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Simulation

Correct Model Even Worse Model
model model
based based sandwich

Effect est se est se est se
Random effects
τ00 0.8201 1.3180 1.3180
τ10 -0.1018
τ11 0.8581
τ20 -0.1563
τ21 0.1157
τ22 1.1409
σ2 3.9115 28.3097 28.3097

Fixed effects
γ00 5.1656 0.1141 5.1555 0.2037 5.1555 0.2034
γ10 2.0524 0.0960 2.0177 0.0559 2.0177 0.1150
γ20 3.0058 0.1086 3.1070 0.0432 3.1070 0.1134
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Eg. of Robust/Empirical Estimation

Specify the “empirical” option in the PROC MIXED statement.

PROC MIXED data=hsbcent covtest method=ML empirical;

CLASS id;

MODEL mathach = cSES female minority meanSES size
sector cSES*size cSES*sector
female*meanSES female*size female*sector
minority*meanSES minority*size minority*sector

/solution chisq cl alpha=.01;

RANDOM intercept female minority cSES
/ subject=id type=un;
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Model Information

Data Set WORK.HSBCENT
Dependent Variable mathach
Covariance Structure Unstructured
Subject Effect id
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Empirical ←− changed
Degrees of Freedom Method Containment
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Solution for Fixed Effects

Standard t
Effect Estimate Error DF Value Pr> |t|
Intercept 12.0260 0.4269 155 28.17 < .0001
cses 2.2823 0.3176 157 7.19 < .0001
female −0.3402 0.4137 121 −0.82 0.4126
minority −4.2068 0.6439 133 −6.53 < .0001
meanses 4.2207 0.4961 6604 8.51 < .0001
size 0.001125 0.000296 6604 3.80 0.0001
sector 1.7360 0.3978 6604 4.36 < .0001
cses*size 0.000032 0.000222 6604 0.15 0.8837
cses*sector −1.0033 0.2503 6604 −4.01 < .0001
female*meanses −0.03207 0.4235 6604 −0.08 0.9396
female*size −0.00070 0.000256 6604 −2.75 0.0059
female*sector −0.3006 0.4150 6604 −0.72 0.4689
minority*meanses −0.7793 0.4933 6604 −1.58 0.1142
minority*size 0.000183 0.000386 6604 0.47 0.6349
minority*sector 2.1189 0.5398 6604 3.93 < .0001
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Contrasts with Robust Estimations

Num Den Chi- F
Label DF DF Square Value Pr>ChiSq Pr> F

Cross-level 5 6604 3.32 0.66 .6503 .6503
interactions
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Comparison: Model versus Robust

Robust Estimation Model-Based
Effect Estimate Std. Error Estimate Std. Error
Intercept 12.0260 0.4269 12.0260 0.4691
cses 2.2823 0.3176 2.2823 0.3111
female −0.3402 0.4137 −0.3402 0.4637
minority −4.2068 0.6439 −4.2068 0.6714
meanses 4.2207 0.4961 4.2207 0.5003
size 0.001125 0.000296 0.001125 0.000314
sector 1.7360 0.3978 1.7360 0.4173
cses*size 0.000032 0.000222 0.000032 0.000203
cses*sector −1.0033 0.2503 −1.0033 0.2528
female*meanses −0.03207 0.4235 −0.03207 0.4838
female*size −0.00070 0.000256 −0.00070 0.000304
female*sector −0.3006 0.4150 −0.3006 0.4284
minority*meanses −0.7793 0.4933 −0.7793 0.5391
minority*size 0.000183 0.000386 0.000183 0.000398
minority*sector 2.1189 0.5398 2.1189 0.5430
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For R Users: Empirical SEs

lmer does not compute these, so I wrote a function to compute
these: “robust.txt”. Later I found some code online, but that I found
online but it is not working.

Use the robust to will compute them:
source(‘‘All functions.txt’’)

Fit a model, say model 3
summary(model3 ← lmer(mathach ∼ 1 + cses + female +

minority + meanses + zsize + sector + cses*zsize +

cses*sector + female*meanses + female*zsize +

female*sector + minority*meanses + minority*zsize +

minority*sector + (1 + cses | id), data=hsb, REML=FALSE))

To get robust/sandwich standard errors, type

r3 ← robust(model3, hsb$mathach, hsb$id,
"between/within")

round(r3, digits=4)
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r3

between/ Model Model Robust Robust
Fixed /within se. t p se t p
(Intercept) 155.00 0.43 27.78 0.00 0.42 28.55 0.00
cses 7015.00 0.31 7.25 0.00 0.32 7.07 0.00
female 7015.00 0.42 -0.85 0.40 0.41 -0.88 0.38
minority 7015.00 0.62 -6.61 0.00 0.65 -6.29 0.00
meanses 155.00 0.46 9.15 0.00 0.49 8.58 0.00
zsize 155.00 0.18 3.94 0.00 0.18 3.88 0.00
sector 155.00 0.38 4.57 0.00 0.39 4.45 0.00
cses:zsize 7015.00 0.12 0.26 0.79 0.13 0.24 0.81
cses:sector 155.00 0.25 -3.93 0.00 0.25 -4.00 0.00
female:meanses 7015.00 0.44 -0.12 0.90 0.42 -0.13 0.90
female:zsize 7015.00 0.17 -2.48 0.01 0.15 -2.75 0.01
female:sector 155.00 0.39 -0.60 0.55 0.41 -0.58 0.56
minority:meanses 7015.00 0.49 -1.64 0.10 0.49 -1.64 0.10
minority:zsize 7015.00 0.22 0.31 0.75 0.23 0.30 0.77
minority:sector 155.00 0.49 4.18 0.00 0.54 3.83 0.00
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Comparison: Model versus Robust

Notes:

Estimates of fixed effect are exactly the same (not shown) and will
always be exactly the same.

Estimates of SE’s differ a little.

If you miss-specify the mean structure, the SE’s differ more.

If you miss-specify the random structure, the SE’s differ more

We’ll stick to model-based because we’re interested in random effects;
however, it can be a good thing to use robust when model building.

C.J. Anderson (Illinois) Statistical Inference: The Marginal Model 64.64/ 138



Overview Fixed Effects: 1 Effect ≥ 1 Effect Robust Est. Likelihood Ratio Test Variances Global Summary

The Classic: Likelihood Ratio Tests

The classical statistical test for comparing nested models.

Suppose that we have two models that have the same fixed and
random effects, except one model has γkl = 0.

The Full Model is the one with all the parameters.

The Reduced model is the one with γkl = 0.

Likelihood ratio test for

Ho : γkl = 0 versus Ha : γkl 6= 0
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Likelihood Ratio Test Statistic

is defined as

−2 lnλN = −2 ln
[
LML(Γ̂o, T̂ , σ̂2)

LML(Γ̂, T̂ , σ̂2)

]

= −2(ln[LML(Γ̂o, T̂ , σ̂2)]− ln[LML(Γ̂, T̂ , σ̂2)])

where

LML(Γ̂o, T̂ , σ̂2) = the value of the likelihood function under the
nested model.

LML(Γ̂, T̂ , σ̂2) = the value of the likelihood function under the full
model.
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Likelihood Ratio Test

If Ho is true (as well as all other assumptions),

Then LR is asymptotically distributed as a χ2 random variable with
degrees of freedom equal to the difference between the number of γ’s in
the two models.

The likelihood ratio test for fixed effects is only
valid for ML estimation.
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L.R. Test & Estimation Method

The LR test is not valid under REML.

Recall that in REML

1 Remove the mean structure from the data & then estimate the
covariance matrix for the random effects .

2 Given T̂ & σ̂2, use standard estimation techniques to estimate the
mean structure (i.e., the γ’s).

Under REML, two models with different mean structures have
likelihood functions based on different observations so the likelihoods
are not comparable.
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Example of Likelihood Ratio Test

LR test on the set of cross-level interactions where the statistical
hypothesis is

Ho : LΓ =




γ12
γ21
γ23
γ32
γ33




=




0
0
0
0
0




(size)j(cSES)ij
(sector)j(female)ij
(SES)j(female)ij
(size)j(minority)ij
(SES)j(minority)ij

versus
Ha : LΓ 6= 0
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Example of Likelihood Ratio Test (continued)

For the likelihood ratio test, we compute the model with and without
these effects and record −2 ln(likelihood):

Estimation method
Model ML REML
Reduced or null 46,223.5645 46,263.2394
Full 46,220.8436 46,288.5541

−2 lnλN = 2.7209 −25.3147
df = 5
p-value = .74
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Example of Likelihood Ratio Test (R)

> anova(model1,model2)

Data: hsb

Models:

model1: mathach ∼ 1 + cses + female + minority + meanses +

sdsize + sector +

model1: (1 | id)

model2: mathach ∼ 1 + cses + female + minority + meanses +

sdsize + sector +

model2: cses * sdsize + (1 | id)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

model1 9 46307 46369 -23145 46289

model2 10 46302 46370 -23141 46282 7.7638 1 0.00533 **

---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Summary: Tests for Fixed Effects

Test Statistic Value Distribution p-value

Model Based
Wald 2.97 χ2

5 .70
F .59 F5,6604 .70
−2 lnλN 2.72 χ2

5 .74

Robust Estimation
Wald 3.32 χ2

5 .65
F .66 F5,6604 .65
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Before Tests for Variance Components

Simplify by dropping the 5 cross-level interactions.

Level 1

(math)ij = β0j + β1j(cSES)ij + β2j(female)ij + β3j(minority)ij +Rij

where Rij ∼ N (0, σ2) i.i.d.

Level 2

β0j = γ00 + γ01(sector)j + γ02(size)j + γ03(SES)j + U0j

β1j = γ10 + γ11(sector)j + U1j

β2j = γ20 + γ21(size)j + U2j

β3j = γ30 + γ31(sector)j + U3j
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Linear Mixed Model

(math)ij = [γ00 + γ01(sector)j + γ02(size)j + γ03(SES)j ]

+[γ10 + γ11(sector)j ](cSES)ij

+[γ20 + γ21(size)j ](female)ij

+[γ30 + γ31(sector)j ](minority)ij

+U0j + U1j(cSES)ij + U2j(female)ij + U3j(minority)ij

+Rij

= γ00 + γ10(cSES)ij + γ20(female)ij + γ30(minority)ij

+γ01(sector)j + γ02(size)j + γ03(SES)j

+γ11(sector)j(cSES)ij + γ21(size)j(female)ij

+γ31(sector)j(minority)ij + U0j

+U1j(cSES)ij + U2j(female)ij + U3j(minority)ij +Rij
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Simpler Model: Model Information

Data Set WORK.HSBCENT
Dependent Variable mathach
Covariance Structure Unstructured
Subject Effect id
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Convergence criteria met.
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Solution for Fixed Effects

Standard t
Effect Estimate Error DF Value Pr> |t|
Intercept 12.0837 0.4123 175 29.31 < .0001
cses 2.3240 0.1518 151 15.31 < .0001
female −0.5404 0.3588 138 −1.51 0.1343
minority −3.7925 0.3135 174 −12.10 < .0001
meanses 3.9813 0.3298 155 12.07 < .0001
size 0.001132 0.000288 174 3.92 0.0001
sector 1.6179 0.2965 128 5.46 < .0001
cses*sector −1.0115 0.2263 153 −4.47 < .0001
female*size −0.00062 0.000279 144 −2.24 0.0269
minority*sector 1.7647 0.4321 126 4.08 < .0001
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Estimated Structural Model. . .

(m̂ath)ij = [12.084 + 1.618(sector)j

+.001(size)j + 3.98(SES)j
]

+[2.324 − 1.012(sector)j ](cSES)ij

+[−.540 − .001(size)j ](female)ij

+[−3.793 + 1.765(sector)j ](minority)ij

. . . for now. . .
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Inference for Variance Components

Need adequate covariance matrix for the random effects (i.e., T ) because

Useful for interpreting random variation in the data.

Essential for model-based inferences.

Over-parameterization of covariance structure −→ inefficient (and
possibly poor) estimated standard errors for the fixed effects.

Under-parameterization of covariance structure −→ invalid inferences
for the fixed effects.
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Inference for Variance Components

Approximate Wald tests (z tests).

Likelihood ratio tests.

Testing the number of random effects.
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Approximate Wald Tests

For both ML and REML.

For the marginal model, variance components are asymptotic normal
with the covariance matrix given by (−H)−1, where H is the
Hessian.

Wald tests (& confidence statements) for:

1 Variances, i.e.,

Ho : τ2k = 0 versus Ha : τ2k 6= 0

2 Covariances, e.g.,

Ho : τkl = 0 versus Ha : τkl 6= 0 for k 6= l
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Approximate Wald Tests: Variances

For example: Ho : τ
2
k = 0 versus Ha : τ2k 6= 0

The closer τ2k is to 0, the larger the sample needed for approximate
normality to hold.

Whether the model is marginal or hierarchical now becomes very
important —

For a hierarchical linear model, the variances of ran-
dom effects cannot be negative. If τ 2k = 0, then

the normal approximation completely fails because a
variance τ 2k cannot be non-negative.
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Variance: Wald Test Statistic

z =
τ̂2k

Ŝ.E.

Example: HSB data and SAS/MIXED commands:

PROC MIXED data=hsbcent noclprint covtest method=ML;
CLASS id;
MODEL mathach = cSES female minority meanSES

size cSES*sector female*size minority*sector
/ solution chisq ddfm=satterth;

RANDOM intercept female minority cSES
/ subject=id type=un;
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Variance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr Z

UN(1,1) id 2.2408 0.4991 4.49 < .0001

UN(2,2) id 0.6791 0.5117 1.33 0.0922

UN(3,3) id 0.9088 0.6936 1.31 0.0951

UN(4,4) id 0.1412 0.2118 0.67 0.2525
Residual 35.3169 0.6106 57.84 < .0001
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Covariances

For example,

Ho : τkl = 0 for k 6= l versus Ha : τkl 6= 0

The distinction between marginal model and HLM (random effects
model) is less crucial.

For a valid test for the covariances, still need to assume that all τ2k ’s
are greater than 0.

SAS/MIXED results for covariances (and variances). . .
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Covariances Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr Z

*UN(1,1)* id 2.2408∗ 0.4991∗ 4.49∗ < .0001∗
UN(2,1) id −0.9391 0.4358 −2.15 0.0312
*UN(2,2)* id 0.6791∗ 0.5117∗ 1.33∗ 0.0922∗
UN(3,1) id −0.1530 0.5090 −0.30 0.7638
UN(3,2) id 0.2106 0.4712 0.45 0.6548
*UN(3,3)* id 0.9088∗ 0.6936∗ 1.31∗ 0.0951∗
UN(4,1) id 0.1467 0.2576 0.57 0.5690
UN(4,2) id −0.1163 0.2395 −0.49 0.6274
UN(4,3) id −0.2376 0.2965 −0.80 0.4230
*UN(4,4)* id 0.1412∗ 0.2118∗ 0.67∗ 0.2525∗
Residual 35.3169 0.6106 57.84 < .0001

“*” indicates statistics for a variance.
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Likelihood Ratio Test for Variances?

The Likelihood ratio test statistic for variance components is

−2 lnλN = −2 ln
[
LML(Γ̂, T̂o, σ̂

2)

LML(Γ̂, T̂ , σ̂2)

]

= −2(ln[LML(Γ̂, T̂o, σ̂
2)]− ln[LML(Γ̂, T̂ , σ̂2)],

where

LML(Γ̂, T̂o, σ̂
2) = the value of the likelihood function under the nest

model.

LML(Γ̂, T̂ , σ̂2) = the value of the likelihood function under the full
model.

C.J. Anderson (Illinois) Statistical Inference: The Marginal Model 86.86/ 138



Overview Fixed Effects: 1 Effect ≥ 1 Effect Robust Est. Likelihood Ratio Test Variances Global Summary

Likelihood Ratio Test Variances?

You can use REML or ML (unlike the fixed effects case).

The test statistic has an approximate χ2 distribution with degrees of
freedom equal to the difference in the number of parameters between
the nested and full models.

One of the required conditions (“regularity conditions”) that gives the
distribution for the test statistic is that the parameter estimates are
not on the boundary of the parameter space. Therefore,. . .

For the HLM, the likelihood ratio test is not valid if τ2k = 0.

For the marginal model, the likelihood ratio test is fine.

Since the Wald and Likelihood ratio tests are not valid when τ2k = 0, we use
an alternative to approach to evaluate Ho : τ

2
k = 0.
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Testing the Number of Random Effects

Goal is to test whether we need (some) of the random effects. e.g.,
Whether we need a random slope for cSES in the HSB example:

Ho : τ30 = τ31 = τ32 = τ23 = 0.

When a τ2k = 0 is on boundary of the parameter space, so we can’t
use the Wald or the likelihood ratio test and compare the test
statistic to a Chi-square distribution.
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Testing the Number of Random Effects

The test that we can do is based on

Self, S.G., & Liang, K.Y. (1987). Asymptotic properties of maximum
likelihood estimators and likelihood tests under nonstandard
conditions. Journal of the American Statistical Association, 82,
605–610.

Stram, D.0., & Lee, J.W. (1994). Variance components testing in the
longitudinal mixed effects model. Biometrics, 50, 1171–1177.

Stram, D.O., & Lee, J.W. (1995). Correction to: Variance
components testing in the longitudinal mixed effects model.
Biometrics, 51, 1196.
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Testing the Number of Random Effects

The test statistic is the likelihood ratio test statistic, but sampling
distribution of the test statistic is a mixture of two χ2 distributions.

Before presenting general rules, we’ll consider 4 cases:

No random effects versus one random effect (i.e., random intercept).

One versus Two Random effects.

q versus q + 1 random effects.

q versus q + k random effects.
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Case 1: One versus Two Random effects.

This is essentially testing for a random intercept:

Ho : τ
2
0 = 0 versus τ20 > 0

If Ho is true, then the distribution of

−2 lnλN = −2(ln[LML(Γ̂, T̂o, σ̂
2)]− ln[LML(Γ̂, T̂ , σ̂2)])

is a mixture of χ2
1 and χ2

0 distributions where we give equal weights to
each (i.e., 1/2).
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Mixture of χ2
0 & χ2

1 with Equal Weights
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Example of Case 1: HSB (using ML)

Null model: no random effects

Full model: random intercept.

ML
No. Deviance Test p-value from

Model of τ ’s −2 ln(λN ) statistic χ2
0 χ2

1 mixture
Null 0 46,372.3 137.6 0 .89E− 31 .45E− 31
Full 1 46,234.7 —

The mixture p-value = .5(.89E − 31) = .45E − 31.
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Mixture of χ2
0 & χ2

1 with Equal Weights
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Case 2: One vs Two Random Effects

Ho : T =

(
τ20 0
0 0

)
versus Ha : T =

(
τ20 τ10
τ10 τ21

)

In other words, we’re testing

Ho : τ10 = τ21 = 0 versus Ha : not τ10 = τ21 = 0

Assuming

τ20 > 0 in Ho

In Ha, T is a “proper” covariance matrix
(i.e., τ10 ≤ τ1τ0, and τ2k > 0).
To get the correct p-value, we take a mixture of χ2

1 and χ2
2

distributions.
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Case 2 (continued)

To get the correct p-value we take a mixture of χ2
1 and χ2

2 distributions.

C.J. Anderson (Illinois) Statistical Inference: The Marginal Model 96.96/ 138



Overview Fixed Effects: 1 Effect ≥ 1 Effect Robust Est. Likelihood Ratio Test Variances Global Summary

Case 2: HSB Example

Null model: Random intercept only

Full model: Random intercept and random slope for “female”

Maximum Likelihood
No. Deviance Test p-value from

Model of τ ’s −2 ln(λN ) statistic χ2
1 χ2

2 mixture

Null 1 46,234.68 5.40 .020 .067 .04
Full 3 46,229.28 —

Mixture p-value = .5(.020) + .5(.067) = .04.
Note Wald p = .09.
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Mixture of χ2
1 & χ2

2 with Equal Weights
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Case 3: q vs q + 1 Random Effects

The hypotheses are

Ho : T =




τ20 τ10 . . . τq0 0
τ10 τ21 . . . τq1 0
...

...
. . .

...
...

τq0 τq1 . . . τqq 0
0 0 . . . 0 0




and

Ha : T =




τ20 τ10 . . . τq0 τ(q+1)0

τ10 τ21 . . . τq1 τ(q+1)1
...

...
. . .

...
...

τq0 τq1 . . . τqq τ(q+1)q

τ(q+1)0 τ(q+1)1 . . . τ(q+1)q τ2(q+1)



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Case 3 (continued)

Assuming that

In Ho, the (q × q) matrix of τ ’s is a “proper” covariance matrix.

In Ha, the ((q + 1)× (q + 1)) matrix is a “proper” covariance matrix.

Then the asymptotic sampling distribution of −2 ln(λN ) is a mixture of χ2
q

and χ2
q+1.
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Case 3: HSB Example

Null model: Random intercept and random slopes for “female” and
“minority”.

Full model: Random intercept and random slopes for “female”,
“minority” and “cSES”.

Maximum Likelihood
No. Deviance Test p-value from

Model of τ ’s −2 ln(λN ) statistic χ2
3 χ2

4 mixture

Null 6 46,225.12 1.55 .67 .82 .74
Full 10 46,223.56 —

Mixture p-value = .5(.67) + .5(.82) = .74.
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Mixture of χ2
3 & χ2

4 with Equal Weights
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Case 4: q vs q + k Random Effects

The sample distribution of −2 ln(λN ) is a mixture of χ2 random
variables and other random variables.

Based on semi-current statistical knowledge, getting p-values for this
case requires simulations to estimate the appropriate sampling
distribution of the test statistic.
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Summary: (MLE)

female, minority, cSES
−2 ln(λN ) = 46, 223.56

q = 10

(correct / naive p-value)

�
�

�

1.55 (.74/.82) 4.49 (.28/.34) ❅
❅
❅

7.04 (.10/.13)

female, minority
−2 ln(λN ) = 46, 225.12

q = 6

female, cSES
−2 ln(λN ) = 46, 288.06

q = 6

minority, cSES
−2 ln(λN ) = 46, 230.60

q = 6

4.17 (.18/.24) ❅
❅
❅
6.84 (.05/.08)

female
−2 ln(λN ) = 46, 229.28

q = 3

minority
−2 ln(λN ) = 46, 231.95

q = 3

cSES
−2 ln(λN ) = 46, 233.98

q = 6
❅
❅
❅

5.40 (.04/.06) 2.73 (.18/.26)

intercept only
−2 ln(λN ) = 46, 234.68

q = 1

137.6 (< .0001)

no random effects
−2 ln(λN ) = 46, 372.3

q = 0
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Summary of The General Procedure

To test q versus q + 1 random effects:

Ho : τ
2
q+1 = τq,q+1 = .... = τ0,q+1 = 0 vs Ha : not H0

T must be a proper covariance matrix (i.e., τ2k > 0 and τkk′ ≥ τkτk′).
Fit nested and full model.
Compute likelihood ratio test statistic.
Compare test statistic to χ2

q and χ2
q−1.

Average the p-values.
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Summary Comments

The validity of statistical tests for number of random effects depend on

1 The likelihood function being maximized over a parameter space where
τkl ≤ τkτl and τ2k ≥ 0.

In linear algebra terms, T is “positive semi-definite,” that is, it is a
“proper” covariance matrix.

2 The estimating procedure converges.

Note: The first condition regarding the parameter space is
software dependent —

In SAS/MIXED, the parameter space is bigger than necessary; that is, we
can get τkl > τkτl. So need to check to make sure that T̂ is a “proper”
covariance matrix (i.e., no correlations ≥ 1 or ≤ −1).
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Summary Comments (continued)

on Tests for number of random effects

The procedure described here differs from Snijders & Bosker (1999)
(Section 6.2.1). Snijders & Bosker (1999) was based on Self & Liang
(1987) and follows the results given by Stram & Lee (1994).

When Stram & Lee (1994) wrote their paper, SAS/MIXED required
T to be “positive definite,” which is too restrictive for the mixture
results. So they suggest corrections that consist of halving p-values,
which is what Snijders & Bosker discuss in section 6.2.1.

In the 2nd edition of Snijders & Bosker (2012) the correct procedure
is given.
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Global Measures of Fit

. . . and some statistics to use in model selection.

Those covered here

Can be used to compare nested and/or non-nested models.

Are not statistical tests of significance.

Specifically,

Information criteria

R2 type measures
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Information Criteria

They all start with the value of the likelihood function of a model and
adjust it based on

Model complexity (i.e., number of parameters)

Sample size

When comparing models, all models should be estimated by MLE. If
you are using REML, the only models that can be compared are those
with the same fixed effects. Just as likelihoods for fixed effects are
not comparable, ICs using these likelihoods are also not comparable.

Fvie common ones (and ones that SAS/MIXED) computed.
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Information Criteria (continued)

Let

L = the maximum of the log of the likelihood function.

d = dimension of the model; that is, the number of estimated
parameters. This includes all the γ’s, τ ’s and σ2.

N is the sample size.
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Four Information Criteria

Criteria Smaller-is-better Reference

AIC −2L+ 2d Akaike (1974)
AICC −2L+ 2dn∗(n∗ − d− 1) Hurvich & Tsai (1989)

Burnham & Anderson (1998)
HQIC −2L+ 2d log logN Hannan & Quinn (1979)
BIC −2L+ d logN Schwarz (1978)
CAIC −2L+ d log(N + 1) Bozdogan (1987)

What is N?

Number of groups/clusters → SAS

Total number of observations → R lmer
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What Should N be?

Delattre, M., Lavielle, M., Poursat, M.A. (2014). A note on BIC in
mixed-effects models. Electronic Journal of Statistics, 8, 456–475. DOI:
10.1214/140EJS890.

Problem is that we have 2 levels and so neither the number of clusters nor
total number of observations is ideal.

Starting from first principles, Delattre et al propose

BIC ≈ −2L+ drandom log(N) + dfixed log(n++)

where

drandom is number of variance and covariance parameters

dfixed is number of fixed effects parameters

N number of clusters

n++ total number of observations
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bic hlm R function

This will compute AIC and 4 different versions of BIC

bic.new ← deviance + nrandom*log(N) + nfixed*log(n++)

bic.harm ← deviance + nrandom*log(N) + nfixed*log(Nn̄j) where n̄j

is the harmonic mean

bic.ngrps ← deviance + nrandom*log(N) (i.e., SAS)

bic.ntot ← deviance + nrandom*log(n++) (i.e., lmer)

Use, for example, the hsb data set
bic.hlm(model1,hsb$id)

AIC bic.new bic.harm bic.ngrps bic.ntot

Model 1 46307.34 46361.65 46361.02 46335.02 46369.26
Model 2 46301.58 46362.76 46362.05 46332.33 46370.37
Model 3 46268.70 46384.20 46382.85 46327.13 46399.42
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Notes Regarding Information Criteria

Be sure that you know whether the one you’re using is a “larger” or
“smaller–is–better.”

SAS/MIXED and R give “smaller–is– better”

Information criteria are only “rules of thumb” and not statistical tests.

Difference 0-1, not important difference
2-3 moderate difference
≥ 4 “big” difference

The different criteria many not always agree.
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Summary: HSB (N = 160)female, minority, cSES
−2 ln(λN ) = 46, 223.56

AIC = 46, 265.6
�

�
�

1.55 (.74/.82) 4.49 (.28/.34)❅
❅
❅

7.04 (.10/.13)

female, minority
−2 ln(λN ) = 46, 225.12

AIC = 46, 259.1

4.17 (.18/.24) ❅
❅
❅
6.84 (.05/.08)

female, cSES
−2 ln(λN ) = 46, 288.06

AIC = 46, 262.1

minority, cSES
−2 ln(λN ) = 46, 230.60

AIC = 46, 264.6

female
−2 ln(λN ) = 46, 229.28

AIC = 46, 257.3
❅
❅
❅

5.40 (.04/.06)

minority
−2 ln(λN ) = 46, 231.95

AIC = 46, 260.0

2.73 (.18/.26)

cSES
−2 ln(λN ) = 46, 233.98

AIC = 46, 262.0
�

�
�

.70 (.55/.70)

intercept only
−2 ln(λN ) = 46, 234.68

AIC = 46, 258.7

137.6 (< .0001)

no random effects
−2 ln(λN ) = 46, 372.3

AIC = 46, 394.3

Model (h) w/ random intercept
& random slopes for effects listed
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Summary Comments: Info. Criteria

Information criteria are only “rules of thumb” and not statistical tests.

The different criteria may not always agree.

Information criteria are different ways of making a subjective decision
(i.e., selecting a good model) look objective.

Model selection is a process of gathering evidence and doesn’t rest
only any single statistic.
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R2 type measures

Extend concept from multiple regression −→ R2.

Uses in the multi-level context:

Indices of fit.

Can be used for diagnostic purposes.
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R2 type measures

In multiple regression, there are different of ways to derive R2:

The maximal squared correlation between the observed and predicted
Y .

The proportional reduction in unexplained (modeled) variance of Y due
to using predictor variables.

The proportional reduction in prediction error variance.

They don’t all work with multilevel models.

R2 Measures in Multilevel Models:

We need to consider micro and macro level residual variance.

So we need to propose measures for each level:

R2
1: level 1

R2
2: level 2
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Proportional Reduction Unexplained Variance

For level 2: R2
2 =

τ∗20
τ20

where

τ∗20 is level 2 residual variance with predictor variables (micro and/or
macro) in the model.

τ20 is without predictor variables.

This value can be greater than one; that is, when τ∗20 > τ20 , R
2
2 => 1. (see

Snijders & Bosker for an example).

. . . a better approach . . . The R2 measures for multilevel models are only
appropriate (make sense) when data come from an observational study; that
is, the predictor variables are random.

We’ll go over this for random intercept models:

Level 1
Level 2
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Level 1: Proportional Reduction in Prediction Error

Level 1: We want a measure of the decrease in prediction error when
predicting Yij , in particular, we want to predict Yij for a randomly drawn
individual i from a randomly drawn group j.

Suppose that the (linear mixed) model in the population is

Yij =

p∑

k=0

γk0Xk,ij + U0j +Rij

where X0,ij = 1 for all individuals and groups.

The Xk are random variables but we don’t know what they equal.
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Level 1, Case 1

The prediction that will minimize the sum of squared errors is the expected
value of Yij ,

E(Yij) = E

[
p∑

k=0

γk0Xk,ij + U0j +Rij

]

=

p∑

k=0

γk0E [Xk,ij] + E [U0j] + E [Rij]

E(Yij) =

p∑

k=0

γk0µk

where

The γ’s are fixed (considered to be known).
The Xk’s are random variables with means µk.
The random variables Xk’s are independent of the residuals (U0j and
Rij).
The residuals are independent of each other.

C.J. Anderson (Illinois) Statistical Inference: The Marginal Model 121.121/ 138



Overview Fixed Effects: 1 Effect ≥ 1 Effect Robust Est. Likelihood Ratio Test Variances Global Summary

Level 1, Case 1: Estimation

To get an estimate of the expected value of Yij, fit the model without any
predictors; that is,

Yij = γ00 + U0j +Rij,

which is our null/empty model and obtain our estimates γ̂00, τ̂
∗2
0 and σ̂∗2.

The estimated mean squared error of prediction equals

var(Yij) = τ̂∗20 + σ̂∗2.
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Level 1, Case 2

When the predictors are known, the best guess for Yij using Xk,ij = xk,ij.

E(Yij |Xk,ij = xk,ij) = E

[
p∑

k=0

γk0xk,ij + U0j +Rij

]

=

p∑

k=0

γk0xk,ij + E[U0j ] + E[Rij ]

=

p∑

k=0

γk0xk,ij

. . . and get τ̂20 and σ̂2.
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Level 1, Case 2: Estimation

The estimated mean squared error of prediction,

1

n+

N∑

j=1

nj∑

i=1

(Yij − Ŷij)
2 = var(Yij − Ŷij)

= var(Yij −
p∑

k=0

γ̂k0xk,ij)

= τ̂20 + σ̂2
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The Level 1 Measure

R2
1 =

var(Yij)− var(Yij −
∑p

k=0 γk0xk,ij)

var(Yij)

= 1− var(Yij −
∑p

k=0 γk0xk,ij)

var(Yij)

= 1− τ20 + σ2

τ∗20 + σ∗2

where τ20 + σ2 is from the one with predictor variables and τ∗20 + σ∗2 is
from the null model (without) predictor variables.

C.J. Anderson (Illinois) Statistical Inference: The Marginal Model 125.125/ 138



Overview Fixed Effects: 1 Effect ≥ 1 Effect Robust Est. Likelihood Ratio Test Variances Global Summary

HSB Example

Model τ̂20 σ̂2 τ̂20 + σ̂2 R2
1

(a) null 8.55 39.15 47.70
(b) cSES 8.61 37.01 45.61 .044
(c) (b) + minority 6.64 36.12 42.77 .103
(d) (c) + female 6.26 35.88 42.14 .117
(e) (d) + sector, size,

& meanSES 1.61 35.89 37.50 .214
(h) (e) + cSES∗sector

female∗size,
& minority∗sector 1.67 35.59 37.26 .219

(i) (h) + 5 more cross-level 1.63 35.59 37.22 .220
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Level 2: R2 Type Measure

Now we consider predictions of the group means of Yij ; that is, Ȳ+j.

The development is similar to that for Level 1, except now the variance of
Ȳ+j also depends on the group sample sizes.

The Level 2 measure is

R2
2 = 1− σ2/n+ τ20

σ∗2/n+ τ∗20

←− with predictors

←− null
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R2
2 Type Measure

R2
2 =

var(Ȳ+j)− var(Ȳ+j −
∑p

k=1 γk0x̄k,+j)

var(Ȳ+j)

= 1− var(Ȳ+j −
∑p

k=1 γk0x̄k,+j)

var(Ȳ+j)

= 1− σ2/n+ τ20
σ∗2/n+ τ∗20

where

σ2 and τ20 are from the model with predictor variables.

σ∗2 and τ∗2 are from the null model.

n = representative value for group sample size.

C.J. Anderson (Illinois) Statistical Inference: The Marginal Model 128.128/ 138



Overview Fixed Effects: 1 Effect ≥ 1 Effect Robust Est. Likelihood Ratio Test Variances Global Summary

Representative Sample Size

If the group sample sizes nj are different, then use either

A typical values (e.g., if groups are classes and most classes have 25
students).

The harmonic mean of the sample sizes:

n̄+ =
N∑N

j=1(1/nj)

where

N is number of macro units.
nj is the number of cases within macro unit j.
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HSB example

The harmonic mean equals 41.0587.

Model τ̂20 σ̂2 R2
1 R2

2

(a) null 8.555 39.149
(b) cSES 8.612 37.005 .045 .006
(c) (b) + minority 6.648 36.121 .105 .213
(d) (c) + female 6.264 35.877 .118 .254
(e) (d) + sector, size, meanSES 1.610 35.890 .215 .740
(h) (e) + cSES∗sector, female∗size

minority∗sector 1.668 35.594 .220 .735
(i) (h) + five more cross-level 1.631 35.589 .221 .739
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R2s for Random Intercept and Slope Models

The concept is the same; however, with the random effects (slopes),
the variances are not constant. Estimation of R2

1 and R2
2 is a bit

harder.

Thanks to a former student, we’ll use the SAS Macro “HLMRSQ.sas”
to compute R2

1 (and R2
2) for random slope models.

Recchia, A. (2010). R-Squared measures for two-level hierarchial
linear models Using SAS. JSS, 31, Code Snippet 2.
URL: http://www.jstatsoft.org/v32/c02/paper.

If you use this MACRO, use the reference above and the date when
the macro was downloaded.
For lmer, I wrote a function to do this called hlmRsq, which is
included in the file
“All,.01infunctions.txt

′′thatisonecourseweb− site.
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HSB example

Harmonic mean: n = 41.0587

Model τ̂20 σ̂2 τ̂20 + σ̂2 R2
1 R2

2

Random Intercept Models
null 8.55 39.15 47.70

(SESij − SESj) 8.61 37.01 45.62 .05 .01

+SESj 2.65 37.01 39.66 .17 .63
+Femaleij+Minorityij
+pAcademicj+Sectorj 1.53 35.89 37.04 .22 .75

Random Slope/Effects Models (n̄+ = 41.06)

(SESij − SESj) + SESj .17 .63
+Femaleij+Minorityij
+pAcademicj+Sectorj .22 .75
+Minorityij (random
intercept dropped) .22 .74
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SAS: Using HLMRSQ.sas

1 Download the sas macro: hlmrsq.sas

2 Before using, either

Put the marco in a SAS program editor window and “run”, or
Add the following to your SAS program
% include ’C:\ . . . path to. . . \ hlmrsq.sas’;

3 Add the statements (in red) to PROC MIXED code:

proc mixed data=hsbcent noclprint covtest
method=ML namelen=200;

class id;
model mathach = cSES female minority meanSES

size sector / solution ;
random intercept female minority cSES / subject=id

type=un g ;
ods output CovParms=cov G=gmat ModelInfo=mod SolutionF=solf;
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Using HLMRSQ.sas (continued)

The last statement in SAS program window should be typed exactly as:

ods output CovParms=cov G=gmat ModelInfo=mod SolutionF=solf;

ods ,output, CovParms, G, ModelInfo , and SolutionF are SAS names.
cov, gmat, mod, and solf are names given to these things and are the
names using in the SAS marco.

4 The following command will execute the macro:
% hlmrsq(CovParms=cov,GMatrix=gmat,ModelInfo=mod,
SolutionF=solf);

5 Output:

Explained Proportion of Variance
Rep Size Level 1 Level 2
41.06 0.212868 0.733890
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lmer and R2s

I could not find a function or package that does this so I wrote a
function called hlmRsq.
Download it from the course website (it’s in file
“All,.01inFunctions.txt′′.Use“source′′totellRwherethefileisandit′sname.
Fit a model: model1 ← lmer(mathach ∼ 1 + cses + meanSES +

(1 + cses | id ), data=hsb, REML=FALSE)

If you have random slopes, put them in fixed part of

model first.

Run:
hlmRsq(hsb, model1, hsb$Id)

harmonic.mean R1sq R2sq

41.05874 0.2191968 0.7387011
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Notes: R2 Measures for HLMs

In the population, R2
1 and R2

2 never decrease when you add
explanatory variables, but they can in the sample.

A large decrease or negative values of R2
1 and/or R2

2 may indicate a
misspecified model for the fixed effects. In particular, the problem may
be that you’ve made an (implicit) restriction such that a variable’s
within-group and between group-coefficients are the same, but in the
population they differ.

In our example, there is a negative value for R2
2(= −.0006). This could

result from the model being too simple.

In the HSB example, the Level 1 and Level 2 effects of student SES are
different; however, in the model that included SESij as the only
predictor implicitly restricts these effects to be equal. In this case

R2
2 = 1− 8.61 + 37.01/41.0587

8.55 + 39.15/41.06
= −.0008
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Why R2’s are Similar?

The R2’s for random slope models should be (and generally are) very
similar in value to those from the random intercept models.

In a random slope model,

Yij = γ00 + γ10xij + U0j + U1jxij +Rij

On average, E(Uj) = 0, and Xij, Uj and Rij are independent of each
other.

One Final Comment: Like the information criteria, R2
1 and R2

2 are indices
of fit and are not statistical significance tests.
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Summary

Tests for fixed effects:

Wald, t and F tests −→ OK under MLE and REML.
Likelihood ratio only valid under MLE.

Test for random effects:

Testing Ho : τ2 = 0 is a non-standard test.
Normality assumption required for z (Wald) test completely fails.
A Regularity condition for valid likelihood ratio test is not met.
Can compute likelihood ratio test statistic for q versus q + 1 random
effects where the sampling distribution of the test statistics follows a
mixture of χ2

q+1 and χ2
q.

Global measures:

Information criteria: useful for model comparison.
R2

1 and R2
2: can detect model miss-specification.
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