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Reading

Snijders & Bosker, pp 60–61, pp 89–90

These notes are also based on

Verbeke & Molenberghs, Chapter 5, Section 13.5, Section 21.5,
Chapter 22.

Longford (1993, Random Coefficient Models).

Goldstein, H. (2003). Multilevel Statistical Models

My experience with such stuff.
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This is Not Magic

 

Published March 6, 1991
Written by Bill Watterson

C.J. Anderson (Illinois) Estimation: Problems & Solutions 4.4/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

Estimation of the Marginal Model

A hierarchical model:

Level 1:
Yij = β0j + β1jxij +Rij

where Rij ∼ N (0, σ2) i.i.d.

Level 2:

β0j = γ00 + γ01zj + U0j

β1j = γ10 + γ11zj + U1j

where

Uj ∼ N
((

0
0

)
,

(
τ2
0

τ10
τ10 τ21

))
i.i.d.
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Corresponding Marginal Model

Yij ∼ N (µij, var(Yij))

where
µij = γ00 + γ10x1ij + γ01zj + γ11xijzj

var(Yij) = (τ20 + 2τ10xij + τ21x
2
ij + σ2)

The HLM implies the marginal model.

The marginal model does not imply the HLM.

The Uj ’s and Rij are latent or unobserved variables and are not part
of the marginal model.
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The Logic

What we observe: Data

A sample of individuals from different groups and take measurements
or make observations on Yij, xij, and zj.

Hypothesis: The HLM model.

Implies the distribution Yij, the “marginal model.”

Using data, estimate the parameters of the marginal model:

Regression coefficients, the γ’s.

Variance components, the τ ’s and σ2.
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Statistical Inference

Are based on the marginal model.

Regarding the γ’s, τ ’s and σ2.

Not on the Uj ’s and Rij. There are no explicit assumptions regarding
the presence or existence of unobserved, random variables in the
marginal model.

Estimating the random, unobserved variables, the Uj’s and Rij, is the
topic for later.
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Methods and Algorithms

Methods of estimation:

(Full) Maximum Likelihood (ML).

Restricted Maximum Likelihood (REML).

Algorithms that implement the estimation method.

Newton-Raphson (NR).

Fisher Scoring.

Iterative Generalized Least squares (IGLS).

Expectation maximization (EM).

Bayesian

Others.
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Methods and Algorithms (continued)

The six possibilities we’ll discuss,

Computing Algorithm
Estimation Newton- Fisher Iterative
Method Raphson Scoring GLS** EM
MLE

REML

Given an estimation method, the results from different algorithms
should be the same. ** Qualifications

** Asymptotically: Depends critically on normality assumption.
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Methods and Algorithms (continued)

An estimation method yields the same results regardless of the algorithm
used to implement it.

The algorithms differ with respect to

Computational problems

CPU time

Likelihood Equations:

The marginal model derived from an HLM:

Yj ∼ N
(
XjΓ, (ZjTZ

′

J + σ2I)
)
.

We’ll look at simple and familiar cases to explain principles. The
principles for general and complex models are the same.

We’ll start with the univariate normal.
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Likelihood Equations: Univariate Normal

Suppose that Y ∼ N (µ, σ2).

The probability density function (p.d.f) of Y

f(y) =
1√
2πσ2

exp

{−1

2

(y − µ)2

σ2

}

The likelihood of y given values of µ and σ2.

If we have one observation on Y , say y1, and we know σ2, the
likelihood function of µ is

L(µ|y1, σ2) =
1√
2πσ2

exp

{−1

2

(y1 − µ)2

σ2

}

The likelihood of various values for µ.
How likely µ is given the data.
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Univariate Normal: Example
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Univariate Normal (continued)

A random sample from a normal population where σ2 = 9 and µ is
unknown:

y1 = −1, y2 = 2, y3 = 3, y4 = 6, y5 = 10

Since observations are independent, the likelihood equation for µ given our
data is

L(µ|y1, . . . , y5, σ2) = L(µ|y1, σ2)L(µ|y2, σ2)L(µ|y3, σ2)

L(µ|y4, σ2)L(µ|y5, σ2)

= L(µ| − 1, 9)L(µ|2, 9)L(µ|3, 9)
L(µ|6, 9)L(µ|10, 9)

Basically, an application of the multiplicative rule of probability.
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Univariate Normal (continued)

In general,

L(µ|y1, . . . , yn, σ2) =

n∏

i=1

L(µ|yi, σ2)

=
n∏

i=1

1√
2πσ2

exp

{−1

2

(yi − µ)2

σ2

}

What does this looks like for our “data”?
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Univariate Normal: Example 2

Data: y1 = −1, y2 = 2, y3 = 3, y4 = 6, y5 = 10
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What’s your “best” guess for µ?
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Univariate Normal: µ and σ2

Data: y1 = −1, y2 = 2, y3 = 3, y4 = 6, y5 = 10

L(µ, σ2|y1, . . . , yn, ) = L(µ, σ2| − 1)L(µ, σ2|2)L(µ, σ2|3)L(µ, σ2|6)
L(µ, σ2|10)

=
n∏

i=1

L(µ, σ2|yi)

=
n∏

i=1

1√
2πσ2

exp

{−(yi − µ)2

2σ2

}
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Univariate Normal: µ and σ2

Data: y1 = −1, y2 = 2, y3 = 3, y4 = 6, y5 = 10
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Another View
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Univariate Normal: µ and σ2

s2 = 1

n−1

∑
i(Yi − Ȳ )2 = 17.5, σ̂2 = 1

n

∑
i(Yi − Ȳ )2 = 14.0.
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Multivariate Normal: p.d.f.

The marginal model derived from an HLM is a multivariate normal
distribution:

f(Y |µ,Σ) = (2π)−n/2|Σ|−1/2 exp

{−1

2
(Y − µ)′Σ−1(Y − µ)

}

where

Y =




Y1

Y2

...
Yn


 µ =




µ1

µ2

...
µn


 Σ =




σ2
1 σ12 . . . σ1n

σ12 σ2
2 . . . σ2n

...
...

. . .
...

σ1n σ2n . . . σ2
n


 .
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Likelihood for Multivariate Normal

The likelihood equation for µ and Σ given y,

L(µ,Σ|y) = (2π)−n/2|Σ|−1/2 exp

{−1

2
(y − µ)′Σ−1(y − µ)

}

A random sample of N vectors of variables from the same population; that
is,

y′

j = (y1j, y2j , . . . , ynj) , for j = 1, . . . , N

The likelihood equation for the parameters is

L(µ,Σ|y1, . . . ,yN ) =
N∏

j=1

(2π)−n/2|Σ|−1/2 exp

{−1

2
(yj − µ)′Σ−1(yj − µ)

}
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Likelihood Equations, Marginal Model

Now things are a bit more complex and simpler in that

We have a different distribution for each of the N macro units; that
is, Yj ∼ N (µj ,Σj), where j = 1, . . . , N .

We add our models for µj and Σj into the multivariate likelihood
equation,

µj = XjΓ

Σj = ZjTZ ′

j + σ2I
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Likelihood Equations for One Marco Unit

For one group/cluster/macro unit’s population,

L(µj ,Σj|yj) = L(Γ,T , σ2|yj,Xj ,Zj)

= (2π)−nj/2|(ZjTZ ′

j + σ2I)|−1/2

× exp

{−1

2
(yj −XjΓ)

′(ZjTZ ′

j + σ2I)−1

(yj −XjΓ)}

Since the observations between groups are independent, we take the
product of the likelihood equations for the groups. . . ,
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Likelihood Equations for Marginal Model

L(µ1,Σ1, . . . ,µN ,ΣN |y1, . . . ,yN ) =

L(Γ,T , σ2|yj ,Xj ,Zj , j = 1, . . . , N) =

N∏

j=1

L(Γ,T , σ2|yj ,Xj ,Zj)

And
N∏

j=1

L(Γ,T , σ2|yj,Xj ,Zj) =

N∏

j=1

(2π)−nj/2|(ZjTZ ′

j + σ2I)|−1/2

exp

{−1

2
(yj −XjΓ)

′(ZjTZ ′

j + σ2I)−1

(yj −XjΓ)}
Hang in there. . .
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Maximum Likelihood Estimator of Γ

If we know Σj, then (with a bit of algebra & calculus):

Γ̂ =




N∑

j=1

X ′

jΣ
−1

j Xj




−1
N∑

j=1

X ′

jΣ
−1

j yj

For univariate data (& independent observations), this is just the
sample mean, ȳ = (1/N)

∑N
j=1

yj.

Since we don’t know Σj, we use an estimate of it in the above
equation.
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For those who want the derivation

Assume that we know Σj and take the log of the likelihood:

L(Γ|yj,Σj) =
∑

j

{
ln(2π)−nj/2 + ln(|Σj|−1/2)

}

+
∑

j

{−1

2
(yj −XjΓ)

′ |Σj |−1 (yj −XjΓ)

}

=
∑

j

{
ln(2π)−nj/2 + ln(|Σj |−1/2)− 1

2
(y

′

j|Σj |−1yj)

}

+
∑

j

{
Γ

′

X
′

j|Σj|−1yj −
1

2
Γ
′X ′

j |Σ−1

j |XjΓ

}

︸ ︷︷ ︸

Take derivative of Kernel:

∂(Kernel)

∂Γ
=

∑

j

{
X ′

j |Σj|−1yj −X
′

j|Σ−1

j |XjΓ

}

Set equal to 0 and solve for Γ:

Γ = (
∑

j

X
′

j|Σ−1|Xj)
−1

∑

j

X ′

j |Σj|−1yj
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Maximum Likelihood Estimation

The maximum likelihood estimates of the regression coefficients, Γ̂,
and the variance components, T̂ (and σ2), are those values that give
us the largest value of the likelihood function.

How do we do this?

Univariate case: given a sample y1, . . . , yn, all from N (µ, σ2), the
MLE of the mean µ and variance σ are

µ̂ =
1

n

n∑

i=1

yi = ȳ and σ̂2 =
1

n

n∑

i=1

(yi − ȳ)2.
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Maximum Likelihood Estimation

In the case of a marginal model derived from an HLM, there is no simple
closed form equation(s) that will give us the MLE estimates of Γ and
T . . . This is where our computing algorithms come in.
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Restricted MLE

Restricted maximum likelihood (REML) estimation and maximum
likelihood estimation (MLE) are similar with respect to estimating
means but differ more with respect to to variance estimates.

To get an idea of what REML is & how it differs from MLE, we’ll
consider

Variance estimation from a sample taken from a N (µ, σ2) population.

Residual variance estimation in linear regression.

REML estimation for marginal model.
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Variance Estimation: Univariate N

Goal: Estimate the variance of a N (µ, σ2) based on a random sample
Y1, Y2, . . . , Yn.

MLE Solution(s):

When µ is known:

σ̂2 =
1

n

n∑

i=1

(Yi − µ)2 −→ unbiased estimator

When µ is not known:

σ̂2 =
1

n

n∑

i=1

(Yi − Ȳ )2 −→ biased estimator
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Unbiased Variance Estimator

The expected value of σ̂2 is

E(σ̂2) =
n− 1

n
σ2

The MLE estimate is too small, because we estimated µ.

The unbiased estimator of σ2 is

s2 =
1

n− 1

n∑

i=1

(Yi − Ȳ )2 and E(s2) = σ2.

The unbiased estimator is an REML estimate.
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General Procedure

To get an unbiased estimate of σ2, it must not depend on the
mean.

n Observations Yi ∼ N (µ, σ2) i.i.d.

(Y1, Y2, . . . , Yn)
′ = Y ∼ N (µ1n, σ

2In)

µ1n = µ




1
1
...
1


 =




µ
µ
...
µ




Covariance matrix,

σ2In = σ2




1 0 . . . 0
0 1 . . . 0
...

...
. . . 0

0 0 . . . 1


 =




σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . . 0

0 0 . . . σ2



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REML General Procedure (continued)

Let A equal an (n× (n− 1)) matrix with (n-1)
linearly independent columns that are orthogonal to 1n.
e.g.,

A =




1 1 1 . . . 1
−1 0 0 . . . 0
0 −1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1




Any matrix A that meets these two requirements will work.

C.J. Anderson (Illinois) Estimation: Problems & Solutions 34.34/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

REML General Procedure (continued)

Define the vector W as
W = A′Y

The vector W has (n− 1) elements that are “error contrasts.”
e.g.,

W = A′Y =




1 −1 0 . . . 0
1 0 −1 . . . 0
1 0 0 . . . 0
...

...
...

. . .
...

1 0 0 . . . −1







Y1

Y2

Y3

...
Yn




=




Y1 − Y2

Y1 − Y3

...
Y1 − Yn



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REML General Procedure (continued)

W = A′Y =




Y1 − Y2

Y1 − Y3

...
Y1 − Yn




The distribution of W is

W ∼ N (0, σ2A′A)

(remember the little extra linear algebra in notes on random intercept and
slope models?)

So we now have a vector where we know what the mean of the variables
equals.
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REML General Procedure (continued)

Since we know the mean of W = AY and W has a (multivariate) normal
distribution, the MLE of σ2 is

σ̂2 =
Y ′A(A′A)−1A′Y

n− 1

which is just a complex way of writing s2,

This is the REML estimator of σ2.

The REML estimator is based on (n− 1) error contrasts; that is, it’s
based on what’s left over after you get rid of (estimate) the mean.
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Residual Variance Estimation

In Linear Regression

Goal: Estimate the variance of the residual σ2 in standard linear regression,

Y = Xβ + ǫ

where

X is an (n× p) design matrix.

β is a (p× 1) vector of regression parameters.

ǫ is a (n× 1) vector of residuals (errors).

ǫ ∼ N (0, σ2I) i.i.d.
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REML in Linear Regression

The MLE (which is also the ordinary least square estimate) of the
regression coefficients is

β̂ = (X ′X)−1X ′Y

We can estimate the residuals by

ǫ̂ = Y −Xβ̂ = Y −X(X ′X)−1X ′Y

The MLE estimate of σ2 is the variance of the estimated residuals:

σ̂2 =
1

n

n∑

i=1

ǫ̂2i
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REML & Linear Regression (continued)

. . . in terms of linear algebra, the MLE estimate of σ2 (the variance of the
estimated residuals)

σ̂2 =
ǫ̂′ǫ̂

n
=

1

n
(Y −Xβ̂)′(Y −Xβ̂)

=
1

n
(Y −X(X ′X)−1X ′Y )′(Y −X(X ′X)−1X ′Y )

This estimator of σ2 is too small or “downward biased”.

E(σ̂2) = E

(
ǫ̂′ǫ̂

n

)
=

n− p

n
σ2.
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REML & Linear Regression (continued)

The unbiased estimator of the variance of the estimated residuals, which is
the REML estimator, is

s2 =
ǫ̂′ǫ̂

n− p

=
(Y −X

β︷ ︸︸ ︷
(X ′X)−1X ′Y )′(Y −X

β︷ ︸︸ ︷
(X ′X)−1X ′Y )

n− p
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REML & Linear Regression (continued)

The REML estimator s2 can be obtained using the general method:

Get a matrix A that is (n × (n − p)) where the columns are linearly
independent and orthogonal to the columns of the design matrix X.

Define a vector W = A′Y of “error contrasts”, so W ∼ normal
where the mean of W does not depend on the mean of Y . The only
unknown parameter of the distribution for W is σ2.

When you maximize the likelihood equations for W , you get
s2 = (ǫ̂′ǫ̂)/(n− p).
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REML & Linear Mixed Model

In the marginal models for HLMs, the mean depends on all the γ’s.
So, in estimating the τ ’s and σ2, we want to take into account the
loss of degrees of freedom in estimating the γ’s.

We can’t just compute a variance estimate and figure out what the
bias factor is and then correct our estimate so that it is no longer
biased, which is all we really would have needed to do in the two
previous sections.

We have to use the error contrast method.
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REML & Linear Mixed Model

Step 1: “Stack” all level 1 regressions,




Y1

Y2

...
YN


 =




X1

X2

...
XN


Γ+




Z1 0 . . . 0

0 Z2 . . . 0

...
...

. . .
...

0 0 . . . ZN







U1

U2

...
UN


+




R1

R2

...
RN




Y = XΓ+ZU +R

This Y is an (n+ × 1) vector with distribution

Y ∼ N (XΓ,V )
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Step 1 (continued)

where V is an (n+ × n+) covariance matrix for all the data,

V = ZTZ ′ + σ2In+

=




(Z1TZ ′

1 + σ2I) 0 . . . 0

0 (Z2TZ ′

2
+ σ2I) . . . 0

...
...

. . .
...

0 0 . . . (ZNTZ ′

N + σ2I)



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Steps 2 & 3 (REML of Linear Mixed Model)

Step 2: Using any (n+ × (n+ − p)) matrix with linearly independent
columns and orthogonal to the columns of the fixed effects design matrix
X, define error contrasts,

W = A′Y

Note: p = number of fixed effects (i.e., γ’s).

We now have W which is an (n+ × 1) vector such that

W ∼ N (0,A′V A).

Step 3 The error contrasts W do not depend on the means (i.e., Γ), so
use maximum likelihood estimation to find T and σ2.

These maximum likelihood estimates of T and σ2 do not depend on
the specific choice of A.

Estimation of fixed effects is a separate step.

C.J. Anderson (Illinois) Estimation: Problems & Solutions 46.46/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

Comparison of MLE & REML

By example using the NELS88 data.

Specific data: Random samples of N = 20, 50, and 100 schools, as
well as full N = 1003 schools.

Use both (full) ML and REML estimation of

Model 1: Random intercept with only one fixed effect.

Model 2: Random intercept and slope with two fixed effects.

Model 3: Random intercept and slope with 6 fixed effects and a
cross-level interaction.
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Design of Mini-Study

N = 20 N = 50 N = 100 N = 1003
Model ML REML ML REML ML REML ML REML

1. Random
intercept

2. Random
intercept
and slope

3. Random
intercept &
slope with 6
fixed effects

I tried random samples of N = 10, but had lots of trouble fitting
complex model.
The random sample of N = 50 reported was my second attempt
sample. Model 2 fit to my initial random sample of N = 50 would not
converge for ML but it did for REML.
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Why We Look at Toy Data

By “toy data”, I mean here hypothetical, simulated, or sampled.

Thursday May 08, 2008  
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Mini-Study: Model 1

Level 1:
(math)ij = β0j +Rij

Level 2:
β0j = γ00 + U0j

Linear Mixed Model:

(math)ij = γ00 + U0j +Rij

where (
U0j

Rij

)
=

((
0
0

)
,

(
τ20 0
0 σ2

))
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Results for Model 1

Fixed Effects

N = 20 N = 50 N = 100 N = 1003
ML REML ML REML ML REML ML REML

γ00 50.74 50.74 50.91 50.91 50.54 50.54 50.80 50.80
(1.08) (1.11) (.66) (.66) (.55) (.55) (.18) (.18)

γ̂00’s are very similar. They aren’t exactly the same, differences show
up in the third decimal point.

The SE’s for γ̂00 are smaller with ML, but differences get smaller with
larger samples.
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Results for Model 1

Random Effects
N = 20 N = 50 N = 100 N = 1003

ML REML ML REML ML REML ML REML

τ20 19.62 20.83 17.27 17.72 26.11 26.41 26.55 26.58
(7.34) (7.93) (4.29) (4.43) (4.26) (4.32) (1.35) (1.37)

σ2 83.32 83.33 77.55 77.55 77.77 77.78 76.62 76.62
(5.50) (5.50) (3.48) (3.48) (2.43) (2.43) (.76) (.76)

τ̂20 ’s are smaller when use ML.

σ̂2’s are smaller when use ML (to 2nd decimal point).

The SE’s for τ̂20 and σ̂2 are smaller with ML, but the differences
between the SE’s from ML and REML get smaller with larger samples.

C.J. Anderson (Illinois) Estimation: Problems & Solutions 52.52/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

Mini-Study: Model 2

Level 1:
(math)ij = β0j + β1j(homework)ij +Rij

Level 2:

β0j = γ00 + γ01(ratio)j + U0j

β1j = γ10 + U1j

Linear Mixed Model:

(math)ij = γ00 + γ10(homew)ij + γ01(ratio)j + U0j + U1j(homew)ij +Rij

where 


U0j

U1j

Rij


 =






0
0
0


 ,




τ20 τ10 0
τ10 τ21 0
0 0 σ2





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Mini-Study Results: Model 2

Fixed Effects

N = 20 N = 50 N = 100 N = 1003
ML REML ML REML ML REML ML REML

intercept 52.72 52.69 48.11 48.12 49.30 49.30 51.52 51.52
(2.86) (2.99) (2.10) (2.15) (2.29) (2.32) (.61) (.61)

homewk 1.61 1.61 1.74 1.74 1.50 1.50 1.47 1.47
(.34) (.35) (.20) (.20) (.14) (.14) (.05) (.05)

ratio −.30 −.30 −.04 −.04 −.09 −.09 −.25 −.25
(.15) (.15) (.11) (.12) (.13) (.13) (.03) (.03)

γ̂’s pretty similar for given N .
SE for γ̂’s small with ML, but differences get smaller with larger N .
γ01 for ratio n.s. until N = 1003.
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Mini-Study Results: Model 2

Random Effects

N = 20 N = 50 N = 100 N = 1003
ML REML ML REML ML REML ML REML

τ2
0

3.18 4.43 15.75 16.70 18.01 18.58 23.27 23.33
(3.72) (4.39) (5.25) (5.54) ( 4.03) (4.16) (1.53) (1.53)

τ10 2.13 2.03 −.87 −.97 1.01 .99 −.90 −.91
(1.46) (1.60) (1.13) (1.18) (.66) (.73) (.30) (.31)

τ2
1

.57 .72 .25 .31 .00 .02 .52 .52
(.75) (.82) (.38) (.40) . (.25) .10) (.10)

σ2 76.16 76.16 71.52 71.49 73.74 73.73 71.74 71.74
(5.13) (5.13) (3.29) (3.29) (2.31) (2.35) (.72) (.72)
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Random Effects: Model 2

Variance estimates (τ̂20 , τ̂
2
1 , σ̂

2) are smaller with ML.

SE’s for the τ ’s and σ2 are smaller with ML.

All SE’s get smaller with larger N .

For N = 100, we have some trouble:

with ML, τ̂2
1
= 1.77E − 17 and no standard error. Why don’t we get

this with REML?

In the SAS/LOG for both ML and REML, ‘‘Estimated G matrix

is not positive definite.’’

(SAS G matrix is our T matrix)
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Random Effects: Model 2, N = 100

Using the REML results. . .

T̂ =

(
18.58 .99

.99 .02

)
−→ ĉorr =

(
1.00 1.56
1.56 1.00

)

This result is fine for the marginal model for math scores, but it’s not OK
for HLM/Linear Mixed Model. This result is inconsistent with our
interpretation of τ ’s.
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Mini-Study Model 3

Level 1:

(math)ij = β0j + β1j(homework)ij + β2j(cSESij) +Rij

Level 2:

β0j = γ00 + γ01(ratio)j + γ02(public)j + γ03( ¯SES)j + U0j

β1j = γ10 + γ11(ratio)j + U1j

β2j = γ20

Linear Mixed Model:

(math)ij = γ00 + γ10(homew)ij + γ20(cSES)ij

+γ01(ratio)j + γ03( ¯SESj)

+γ11(ratio)j(homew)ij

+U0j + U1j(homew)ij +Rij

C.J. Anderson (Illinois) Estimation: Problems & Solutions 58.58/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

Model 3: Mini-Study Results

With these data and the considerably more complex model, I got the
same basic pattern of results.

With more complex model and random sample N = 100 and ML, I
was unable to get the model to converge.

I was expecting to get more differences in terms of the values of
estimated fixed than I actually got when I added more fixed effects.
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Summary Comparison of REML & MLE

Maximum Likelihood Principle:
Both are based on this, so both yield estimators that are

Consistent
Efficient
Asymptotic normal

Variance Components:
The REML estimates are larger than the ML estimates.

Fixed Effects

MLE provides estimates of fixed effects, while REML requires an extra
step.

For univariate normal and standard linear regression, MLE of the mean
and variance are independent.

The estimated mean is the same under MLE and REML; that is, MLE or
REML could be used to estimate the variance and the estimated means
wouldn’t change.
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Comparison of REML & MLE: Fixed Effects

For the linear mixed model, the estimation of mean and variance are
not independent, because

Γ̂ =




N∑

j=1

X ′

jΣ̂
−1

j Xj




−1
N∑

j=1

X ′

jΣ̂
−1

j yj

where Σ̂j = (ZjT̂ Z ′

j + σ̂2I).

The vector of fixed effects is not the same under MLE and REML
(even though the REML estimations is only with respect to the
variance components).

With balanced designs, the REML estimators are the same as classical
ANOVA-type ones and therefore they don’t depend on assumption of
normality.
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Comparison of REML & ML: Std Errors

Which is better (i.e., smaller standard errors) depends on number of
marco units, number of fixed effects, and the actual value of the
variance parameters.

If N(number of fixed effects) is “large”, then

MLE better when number of fixed effects ≤ 4.

REML better when number of fixed effects > 4.

The greater the number of fixed effects, the greater the difference
between REML and ML.
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Comparison of REML & ML: Deviance

−2LogLike or “deviance.”

These values will differ and only some conditional likelihood ratio tests are
valid for REML whereas they are valid for MLE.. . .more on this in next
section of notes (on statistical inference)
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Model Fitting Procedures: Algorithms

All are iterative.

A “Parameter Space” is the possible values for the model parameters
(i.e., γ’s, τ ’s and σ2.)

The possible values of (consistent with HLM)

γ’s are Real numbers

τ2k are non-negative real numbers

τkl (k 6= l) are Real numbers

σ2 are non-negative real numbers.

“Boundary” of the parameter space.

Sometimes the MLE’s are outside the parameter space, in which case
the estimates value is set equal to the boundary value (e.g., τ2k = 0).
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Four Major Algorithms

Newton-Raphson.

Fisher Scoring.

Iterative Generalized Least Squares (IGLS).

Expectation-Maximization.
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Newton-Raphson

Iterative algorithm for solving non-linear equations.

SAS default (ridge-stabilized version)

It converges to a unique maximum of the likelihood function.

It can be used even when the parameter space if not “open;” but in
this case, there is no guarantee that you have a global maximum.
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Newton-Raphson: How it works

(1) Start with an initial guess of the solution (parameters).

(2) Approximates the function to be maximized in the neighborhood of
the initial (current) guess by a second degree polynomial.

(3) Find the maximum of the polynomial to get better guesses for the
parameters.

(4) Using new estimates, go back to step 2 and repeat until converge.
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Newton-Raphson: Visual
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Newton-Raphson: Some Math

Let θ = vector of parameters, for example

θ =
(
γ00, γ01, . . . , τ

2
0 , . . . , σ

2
)
′

.

Get starting values for parameters.

Up-date parameter estimates using

θnew = θold −H−1
∆

Check for convergence.
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Newton-Raphson: Up-dating Equation

θnew = θold −H−1
∆

θnew are up-dated parameter estimates.

θold are the current parameter estimates.

∆ is “Score” vector.

Vector of first partial derivatives.
Computed using θold.
It should equal 0 when you have the MLEs.

H is the “Hessian” matrix.

Matrix of second partial derivatives.
Computed using θold.
Sample Information matrix = −H (information matrix ≡ −E(H)).
After convergence, −H−1 contains estimates of the variances and
covariances of parameter estimates.
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Fisher Scoring

(Bascially) Same as Newton-Raphson, but uses the Expected value of
the Hessian matrix.

Overall, preference for Newton-Raphson because it’s easier to deal with
sample H.

Sometimes works when Newton-Raphson doesn’t, especially when
fitting complex covariance structures.

It’s best that the final iterations are done by Newton-Raphson so that
the final solution uses the sample Hessian matrix (i.e., the SE’s are
based on data rather than on expectations) — especially when there is
missing data in longitudinal case (see Verbeke & Molenbergs, Chapter
21).

If don’t have random effects, then estimation of the regression models
by Newton-Raphson, Fisher scoring and ordinary least squares are the
same.

C.J. Anderson (Illinois) Estimation: Problems & Solutions 71.71/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

Iterative Generalized Least Squares

Our linear mixed model is

Y = XΓ+ZU +R

where

Y =




y11
y21
...

yn11

y12
...

ynjN




=




y1

y2

...
yN


 , U =




U1

U2

...
UN


 , etc

with our usual normality and independence assumptions for Uj and R.
C.J. Anderson (Illinois) Estimation: Problems & Solutions 72.72/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

Iterative Generalized Least Squares (continued)

If we knew T and σ2, then we could construct the covariance matrix for Y ,

V = (ZTZ ′ + σ2I)

We could use Generalized Least Squares to estimate Γ,

Γ̂ = (X ′V −1X)−1X ′V −1Y
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IGLS Algorithm

Step 0: Using OLS regression to get initial estimate of V .

Step 1: Use generalized least squares (GLS) to estimate the fixed
effects,

Γ̂ = (X ′V −1X)−1X ′V −1Y

Step 2: Compute “total” residuals Ỹ = Y −XΓ̂ and Ỹ Ỹ ′.
According to our model,

Y −XΓ = ZU +R

So
E(Ỹ Ỹ ′) = V .
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IGLS Algorithm (continued)

Step 3: Rearrange elements of Ỹ Ỹ ′ into a vector and express these
residuals as a linear model and use GLS to get new estimates of the
elements of T and σ2.

Step 4: Check for convergence.

If not, go back to Step 1.

If yes, get estimates of standard errors of the regression parameters
using the estimate of V from the least cycle (i.e., treat V as if it is
known).
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Little Example of IGLS: Step 1

Suppose
Yij = γ00 + γ10xij + U0j +Rij

where U0j ∼ N (0, τ20 ) and Rij ∼ N (0, σ2) i.i.d.

Estimate the γ’s using Γ̂ = (X ′V −1X)−1X ′V −1Y , where

Y =




Y11

Y21

...
YnN ,N


 X =




1 x11
1 x21
...

...
1 xnN ,N


 Γ =

(
γ00
γ10

)

and

V =




Σ1 0 . . . 0

0 Σ2 . . . 0

...
...

. . .
...

0 0 . . . ΣN


 where Σj = ZjTZ ′

j + σ2Ij
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Little Example of IGLS: Step 2 & 3

Compute vector of raw residuals,

Ỹ = Y − (XΓ̂)

That is

ỹij = yij − (γ̂00 + γ̂10xij)

Compute cross-products, ỹij ỹi′j′ , for all i and j, which are the
elements of Ỹ Ỹ ′

Expectations of elements of Ỹ Ỹ ′:

Diagonals: E(ỹij ỹij) = τ20 + σ2

Same group, different individuals: E(ỹij ỹi′j) = τ2
0

Different groups: E(ỹij ỹi′j′ ) = 0
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Little Example of IGLS: Step 3 (continued)

Re-arrange elements of Ỹ Ỹ ′ into a vector

E




ỹ211
ỹ21ỹ11

...
ỹ12ỹ11

...
ỹ2nN ,N




=




τ20 + σ2

τ20
...
0
...

τ20 + σ2




We know have a linear model for τ and σ2.

C.J. Anderson (Illinois) Estimation: Problems & Solutions 78.78/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

Little Example of IGLS: Step 3 (continued)

Linear model for τ and σ2




ỹ211
ỹ21ỹ11

...
ỹ12ỹ11

...
ỹ2nN ,N




= τ20




1
1
...
0
...
1




︸ ︷︷ ︸
block diagonals &

+ σ2




1
0
...
0
...
1




︸ ︷︷ ︸
diagonals of V

Use GLS to estimate this model.

C.J. Anderson (Illinois) Estimation: Problems & Solutions 79.79/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

Comments Regarding IGLS

Can be used to get REML’s.

Implemented in MLwin.

The normality assumption for Uj ’s and Rij’s permits expressing the
variances and covariances of the Yij’s as a linear function of the τ ’s
and σ2.

The parameter estimates are the MLE’s if the normality assumption
holds.

If normality does not hold, then

Parameters estimates are consistent, but not efficient.
Estimated standard errors are not consistent.
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Expectation-Maximization, EM

Although this is the “old” method of fitting variance components
models, it is still useful, especially when

Have complicated likelihood functions.

Get good starting values for Newton-Raphson and/or Fisher scoring
(direct likelihood maximization methods).

Data are not missing at random (pertains to longitudinal data).

Incomplete data.

Either missing or latent.
In HLM context, we have latent or unobserved random variables — the
Uj’s and Rij ’s.

Complete data.
The observed data and the unobserved values of the random effects.
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Expectation-Maximization, EM (continued)

Repeat two steps until convergence achieved:

(1) Expectation or “E–Step”:

Given current values of parameters, compute the expected value of
the missing data, so that you now have complete data.

(2) Maximization or “The M–Step”:

Standard maximization.

Drawback: EM tends to be slow to converge.
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Estimation Problems

They are caused by estimating variance components (iterative procedures
needed because we have these).

Problems encountered:

Lack of convergence

Boundary values.

T̂ not positive definite.

Hessian not positive definite.

Things to look for and ways to deal with them.. . .

According to Singer & Willet, the source of the estimation problems is
data are unbalanced data.
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Small Variance Components

Variances components depend on the scale of the explanatory
variables.

We can transform explanatory variables so that variance estimates will
be larger. e.g.,

Level 1:

Yij = β0j + β1jxij +Rij

= β0j + 10β1j

(xij
10

)
+Rij

= β0j + β∗

1jx
∗

ij +Rij

where Rij ∼ N (0, σ2) i.i.d.
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Small Variance Components

Level 2:
β0j = γ00 + γ01zj + U0j

β∗

1j = 10(γ10 + γ11zj + U1j)

= γ∗10 + γ∗11zj + U∗

1j

If the covariance matrix for U = (U0j , U1j)
′ equals

T =

(
τ20 τ10
τ10 τ21

)
,

Then the covariance matrix for (U0j , U
∗

1j)
′ is

T ∗ =

(
τ20 10τ10

10τ10 100τ21

)
=

(
τ20 τ∗10
τ∗10 τ2∗1

)
.

The estimated variance τ2∗1 is 100 times larger when you use xij/10 as
the explanatory variable instead of xij.
Using transformed explanatory variable x∗ij moves the solution away
from the “boundary” of the parameter space.
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Model Miss-specification & Zero Variances

The HLM is more restrictive than the marginal model in terms of what
parameters can equal, which can cause problems.

Zero variances

Negative variances

Correlations greater than 1.

Example 5.3 from Snijders & Bosker.

In this example they fit a very complex model with

2 micro level variables.
3 macro level variables.
Random intercept and 2 random slopes.

To get any estimates (i.e., so they get a solution that converges), Snijder &
Bosker fixed τ12 = 0 and estimated that τ̂22 = τ̂20 = 0.

Without fixing τ12 = 0, no convergence.
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Zero Variances: SAS/MIXED

To replicate their results in SAS/MIXED, first we don’t restrict τ22 , τ12 and
τ20 to equal zero:

PROC MIXED data=center noclprint covtest method=ML;
CLASS schoolNR;

MODEL langPOST= oIQ verb oses ogrpIQ ogrpsize mixedgra
oIQ verb*ogrpIQ oIQ verb*ogrpsize oIQ verb*mixedgra
oses*ogrpIQ oses*ogrpsize oses*mixedgra /solution;

RANDOM int oIQ verb oses / type=un sub=schoolNR;
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Results from SAS

WARNING: Did not converge.
Covariance Parameter Values

At Last Iteration

Cov Parm Subject Estimate
UN(1,1) schoolNR 7.0404
UN(2,1) schoolNR -0.3180
UN(2,2) schoolNR 0.08614
UN(3,1) schoolNR -0.02363
UN(3,2) schoolNR -0.03093
UN(3,3) schoolNR 0
Residual 39.9664

C.J. Anderson (Illinois) Estimation: Problems & Solutions 88.88/ 106



Estimating Margin Methods & Algorithms Likelihood Equations/MLE REML Comparison Algorithms Problems Summary Bayesian

Zero Variances: SAS/MIXED

PARMS (7) ( -.3) (.1) (0) (0) (0) (40) / eqcons=4, 5, 6;

PARMS allows you to specify starting values.

The order to give starting values shown in the previous slide, i.e.,

τ20 , τ01, τ21 , τ02, τ12, τ22 , σ2

Can use either EQCONS= or HOLD= options;

EQCONS= Equality Constraints

HOLD= set values are starting values.
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MIXED Results with PARMS

Parameter Search
CovP1 CovP2 CovP3 CovP4 CovP5 CovP6 CovP7 LogLike
7.00 -0.30 0.10 0 0 0 40.00 -7545.9166

-2 Log Like
15091.8333

Iteration History

Iteration Evaluations -2 Log Like Criterion
1 2 15089.76773914 0.00004382
2 1 15089.51198275 0.00000067
3 1 15089.50829394 0.00000000
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MIXED Results with PARMS

Covariance Parameter Estimates
Standard Z

Cov Parm Estimate Error Value Pr Z

UN(1,1) 7.4859 1.2511 5.98 < .0001
UN(2,1) −0.6447 0.2563 −2.51 0.0119
UN(2,2) 0.1154 0.08246 1.40 0.0809
UN(3,1) 0 . . .
UN(3,2) 0 . . .
UN(3,3) 0 . . .
Residual 39.3518 1.2268 32.08 < .0001

Convergence criteria met.

OK then?
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MIXED Results with PARMS

Not OK.

Checking the SAS LOG window. . .

NOTE: Convergence criteria met.

NOTE: Estimated G matrix is not positive definite.

For a much better model. . . see Table 5.4
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Negative “Variances”

The ML estimates may be outside the parameter space for an HLM.

e.g., Remember that “bad” model using the HSB data?

(math)ij = γ00 + γ10(cSES)ij + γ01(SES)j

+U0j + U1j(cSES)ij + U2j(SES)j +Rij
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Negative “Variances”

The implied marginal model

(math)ij ∼ N (µj , vj)

where
µj = γ00 + γ10(cSES)ij + γ01(SES)j

and

vj = τ20 + 2τ01(cSES)ij + 2τ02(SES)j

+2τ12(cSES)ij(SES)j

+τ21 (cSES)
2
ij + τ22 (SES)

2
j + σ2

The τ ’s and σ2 can be positive or negative just so long as vj is
positive; however,
By default, SAS/MIXED restricts τ2k ’s and σ2 to be non-negative.
If this restriction is removed, then the model converges.
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Bad Model for HSB: Input

Input:

PROC MIXED data=hsb noclprint covtest method=reml
nobound ;

CLASS id;
MODEL mathach = cSES meanSES / solution;
RANDOM intercept cSES meanSES

/ subject=id type=un;
RUN;

“nobound” removes the restriction that τ2k and σ2 be non-negative.
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Bad Model for HSB: Output

Fixed Effects Random Effects
estimate SE estimate SE

intercept γ00 12.64 .15 intercept τ20 3.08 .52
cSES γ01 2.19 .13 τ10 −.35 .26
meanses γ02 5.83 .31 cSES τ21 .69 .28

τ20 −.13 .40
τ21 −.72 .56
τ22 −2.22 1.26
σ2 36.71 .63

This is a “bad” HLM — we get a good HLM if we remove U2j .
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Correlations Greater Than 1

We have seen examples of this:

Random Sample from NELS88 for N = 100 (random slope &
intercept model):

Using the REML results. . .

T̂ =

(
18.58 .99

.99 .02

)
−→ ĉorr =

(
1.00 1.56
1.56 1.00

)

Computer lab/homework. . . be on the look out for this.
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Fisher Scoring in SAS

PROC MIXED . . . SCORING=<number> ;

From SAS/MIXED documentation:

SCORING=<number> requests that Fisher scoring be used in
association with the estimation method up to iteration number, which
is by default 0. When you use the SCORING= options and PROC
MIXED converges without stopping the scoring algorithm, PROC
MIXED uses the expected Hessian matrix to compute approximate
standard errors for the covariance parameters instead of the observed
Hessian. The output from the ASYCOV and ASYCORR options is
similarly adjusted.
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Summary: Estimation

Maximum likelihood equations and principle.

Methods:

MLE — biased but it is important for inference.
REML — unbiased and sometimes work when MLE doesn’t.

Algorithms:

Newton-Raphson
Fisher scoring
Iterated Generalize Least Squares (IGLS)
EM
Bayesian

Problems & Solutions....
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Summary: Problems & Solutions

Numerical problems arise from the fact that we’re estimating the variance
components.

These problems include:

Failure to converge.

Estimates that do not conform to our HLM.

Possible ways to fix numerical problems:

Transform explanatory variables.

Allow negative “variances”.

Use REML instead of ML.

Use Fisher scoring, IGLS or EM instead of Newton-Raphson.

Correct model specification!

Use Bayesian esian estimation
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Bayesian Estimation

by example using the NELS data with 23 schools.

See html document on web-site: “587Work.html”.

If you want to run the R script, you will need to install STAN and the
brms package. Instructions for this can be found on the web-site. Follow
the instructions exactly.
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The Basics

From Bayes theorem

p(θ|y) =
p(y|θ)p(θ)

p(y)

∝ p(y|θ)p(θ)

y is data.

θ is unknown parameter(s).

p(y|θ) is sample model, the data model, or the likelihood function.

p(θ) is the prior distribution of the parameter θ.

p(y) is the probability of data or evidence.

p(θ|y) is the posterior distribution of the parameter given data.
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Random Effects Models are Naturally Bayesian

Yij = β0j + β1jxij +Rij

and

β0j = γ00 + U0j

β1j = γ10 + U1j

or with assumptions on random variables,

β0j ∼ N((γ00), τ
2
0 )

β1j ∼ N((γ10), τ
2
1 )
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How?

Analytic – derive formula and “plug-n-chug”

Grid method

Monte Carlo Markov Chain — these are all special cases of
Metropolis-Hastings Algorithm.

The major ones:

Gibbs sampling (JAGS or just another gibbs sampler)
Metropolis
Hamletonian Sampling and STAN (brms is wrapper function for rstan)
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Metroplois-Hastings Algorthm

Draw auxiliary variables φ∗ ∼ N(0,M)
then Leapfrog to get θ∗

❄

Compute r = min

(
1,

p(θ∗|y)p(φ∗)
p(θt|y)p(φt)

)

❄ ❄

If r = 1 If r < 1

Set θt = θ∗

✯

Draw u from
Uniform(0,1)

❄

✛

If r > u

If r < u

Set θt = θt−1

✯ ❨
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Example Simmulation

https://chi-feng.github.io/mcmc-demo/app.html
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