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© Introduction: Estimation of marginal models
@ Maximum Likelihood Estimation Methods

@ Likelihood Equations
@ Full Maximum Likelihood Estimation

o Restricted Maximum Likelihood Estimation
© Model Fitting Procedures: Algorithms
© Estimation Problems

© A brief example on Bayesian estimation in R
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Snijders & Bosker, pp 60-61, pp 8990
These notes are also based on

@ Verbeke & Molenberghs, Chapter 5, Section 13.5, Section 21.5,
Chapter 22.

@ Longford (1993, Random Coefficient Models).
@ Goldstein, H. (2003). Multilevel Statistical Models

@ My experience with such stuff.
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Estimating Margin

i Estimation of the Marginal Model

A hierarchical model:

Level 1:
Yij = Boj + Bijrij + Rij
where R;j ~ N(0,0?) i.i.d.

Level 2:

Boj = o0+ 012 + Uo;
Bi; = Motz + Uy

where
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Estimating Margin

i Corresponding Marginal Model

Yij ~ N(/Mj,var(yéj))
where
Wi = Y00 + V102145 + Y0125 + V11%45%5

var(Yy;) = (18 + 2710245 + 7'121% +0?)

@ The HLM implies the marginal model.
@ The marginal model does not imply the HLM.

@ The Uj's and R;; are latent or unobserved variables and are not part
of the marginal model.
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Estimating Margin

I The Logic

@ What we observe: Data

A sample of individuals from different groups and take measurements

or make observations on Y;;, x;;, and z;.

@ Hypothesis: The HLM model.
Implies the distribution Y;;, the “marginal model.”
@ Using data, estimate the parameters of the marginal model:

@ Regression coefficients, the 7's.

@ Variance components, the 7's and 2.
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Estimating Margin

E Statistical Inference

@ Are based on the marginal model.
@ Regarding the +'s, 7's and o2.

@ Not on the U;'s and R;;. There are no explicit assumptions regarding
the presence or existence of unobserved, random variables in the
marginal model.

@ Estimating the random, unobserved variables, the U;'s and R;;, is the
topic for later.
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Methods & Algorithms

JL Methods and Algorithms

@ Methods of estimation:

o (Full) Maximum Likelihood (ML).
o Restricted Maximum Likelihood (REML).

@ Algorithms that implement the estimation method.

@ Newton-Raphson (NR).

o Fisher Scoring.

o lterative Generalized Least squares (IGLS).
o Expectation maximization (EM).

o Bayesian
@ Others.
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Methods & Algorithms

JL Methods and Algorithms (continued)

The six possibilities we'll discuss,

Computing Algorithm
Estimation | Newton- | Fisher | lterative
Method Raphson | Scoring | GLS** EM
MLE

REML

Given an estimation method, the results from different algorithms
should be the same. ** Qualifications

** Asymptotically: Depends critically on normality assumption.
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Methods & Algorithms

JL Methods and Algorithms (continued)

An estimation method yields the same results regardless of the algorithm
used to implement it.

The algorithms differ with respect to

@ Computational problems
@ CPU time

Likelihood Equations:

@ The marginal model derived from an HLM:
Y ~ N (X,T(2,TZ) + 0°T)).

@ We'll look at simple and familiar cases to explain principles. The
principles for general and complex models are the same.
o We'll start with the univariate normal.
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Likelihood Equations/MLE

JL Likelihood Equations: Univariate Normal

@ Suppose that Y ~ N(p,0?).
@ The probability density function (p.d.f) of Y

F) = mf?xp{%”y;—;‘f}

The likelihood of 4 given values of i and o2.

@ If we have one observation on Y, say y1, and we know o2, the

likelihood function of y is
. o YO 1)?
2102 2 o?

@ The likelihood of various values for p.
How likely p is given the data.

L(:U“yh 02) =
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Anderson (lllinois)

Value of Likelihood Ratio Function
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Likelihood Ratio Function: y=2, sigma2=9

Possible Values for mu
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Likelihood Equations/MLE

I Univariate Normal (continued)

A random sample from a normal population where 02 = 9 and p is
unknown:

n=-1, y=2 y3=3, y1=06, y;=10

Since observations are independent, the likelihood equation for i given our
data is

L /1’|y170—2 L H|y2a02)L(M|y3702)

L(H|y1a'~'7y5a02) ( ) (
L(plys, o®)L(plys, o)
(
(

L(2]6,9) L ([ 10,9)

Basically, an application of the multiplicative rule of probability.
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Likelihood Equations/MLE

I Univariate Normal (continued)

In general,
n
L(,u|y1,...,yn,a2) = HL(/’L|yZ7U)
=1
_ ﬁ L epd Sl )
iy V2mo? 2 o?

What does this looks like for our “data”?
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Data: y1 = —1,y2 = 2,y3 = 3,54 = 6,y5 = 10

Likelihood Ratio Function: n=5, sigma2=9
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What's your “best” guess for u?
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Likelihood Equations/MLE

JL Univariate Normal: p and o2

Data: Y1 = _1,:1/2 = 27113 = 37114 = 6)y5 =10

L(M7U2‘yl7"'7yn7) = L(H7U2‘ - 1)L(H7U2‘2)L(H7U2‘3)L(H7U2|6)

L(j1,0%]10)
n
= HL(M?02|yi)
=1
n 2
1 (s —
_ exp{ (vi 2#) }
i V2mo 20

C.J. Anderson (lllinois) Estimation: Problems & Solutions 17.17/ 106



Likelihood Equations/MLE

JL Univariate Normal: p and o2

Data: Y1 = _1,:1/2 = 27113 = 37114 = 6)y5 =10

Lmusigma2
113E—-06 1

7.54E—-07 |

3.77E—07 |

0.00E+001
10
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kelihood Equations/MLE

Contour plot of likelihood ratio surface
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Likelihcod Function for Mean and Variance
Data: —1, 2, 23, 8, 10
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Likelihood Equations/MLE

JL Multivariate Normal: p.d.f.

The marginal model derived from an HLM is a multivariate normal
distribution:

P10, %) = (o) 22 e { SV - S - )

where
Y; 2
1 1 o{ 012 ... Oip
2
Yy 2 o12 03 ... O
Y = p= N
Y, 2
n Hn Oln O2n (o
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Likelihood Equations/MLE

X Likelihood for Multivariate Normal

The likelihood equation for p and 3 given v,

L, Bly) = (2023 e { - = - )

A random sample of N vectors of variables from the same population; that
is,

y;-:(ylj,ygj,...,ynj), fOI’j:l,...,N
The likelihood equation for the parameters is

N

-1 _
L(p, Sy, .. oyn) = [[ @) 23] 1/2exp{ 5 (W — 'S 1(%—#)}
j=1
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Likelihood Equations/MLE

I Likelihood Equations, Marginal Model

Now things are a bit more complex and simpler in that

@ We have a different distribution for each of the N macro units; that
is, Y; ~ N(pj, %), where j =1,...,N.

@ We add our models for p; and X; into the multivariate likelihood
equation,
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Likelihood Equations/MLE

JL Likelihood Equations for One Marco Unit

For one group/cluster/macro unit’'s population,

L(p;, %jly;) = LT, T,0%y;,X;,Z;)
= (QW)—”j/2|(ijz;.+021)|—1/2

-1
X exp {T(y] - X,T)(Z;TZ; + o?1)7!
(y; — X;T)}

Since the observations between groups are independent, we take the
product of the likelihood equations for the groups. . .,

C.J. Anderson (lllinois) Estimation: Problems & Solutions 24.24/ 106



Likelihood Equations/MLE

JL Likelihood Equations for Marginal Model

L(p,%21,...., 0N, EN|Y1,- . YN) =

N
LY, T,0%y;, X;, Zj,j=1,...,N) = [[L(@.T,0%y;,X;,2;)

7=1
And
N N
[[L@.7.0%y;, X;,2;) = []@n)™"?(2,TZ]+ 1)/
j=1 j=1

-1
exp {7(% — XjI‘)’(ZjTZ;- + (72I)_1

(y; — X;I0)}
Hang in there. ..
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Likelihood Equations/MLE

X Maximum Likelihood Estimator of I

o If we know X, then (with a bit of algebra & calculus):

X N 1N
P=|> Xi37'X; | > XiZ'y,
j=1 j=1

@ For univariate data (& independent observations), this is just the
sample mean, g = (1/N) Z;\;l Yj.

@ Since we don't know X, we use an estimate of it in the above
equation.

26.26/ 106
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Likelihood Equati

E For those who want the derivation

Assume that we know X; and take the log of the likelihood:
L(Tly;, %) = Z {ln(27r)’”j/2 + 1n(‘2j‘71/2)}

S {F -0 - )
J

= {1n(27r)*"1/2 +In(|%,] 7% - %(y;\Ej\’lyj)}

J

’ ’ 1

-1 -1

+) {r X%y - 5T XIS |Xjr}
J

Take derivative of Kernel:

O(Kernel) i -1 P
—ar :;{Xﬂzﬂ yj*Xj‘Ej ‘XJ'F}
Set equal to 0 and solve for I':
D=0 X=X Y Xm
J J
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Likelihood Equations/MLE

K Maximum Likelihood Estimation

@ The maximum likelihood estimates of the regression coefficients, f‘
and the variance components, T' (and 02), are those values that give
us the largest value of the likelihood function.

@ How do we do this?

@ Univariate case: given a sample 41, ..., yy, all from N (u,o?), the
MLE of the mean p and variance o are

z_: and 62 = %Z(yz — 9%

SIH
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Likelihood Equations/MLE

K Maximum Likelihood Estimation

In the case of a marginal model derived from an HLM, there is no simple
closed form equation(s) that will give us the MLE estimates of I" and
T'...This is where our computing algorithms come in.
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REML

E Restricted MLE

@ Restricted maximum likelihood (REML) estimation and maximum
likelihood estimation (MLE) are similar with respect to estimating
means but differ more with respect to to variance estimates.

@ To get an idea of what REML is & how it differs from MLE, we'll
consider
o Variance estimation from a sample taken from a N (i, o?) population.
@ Residual variance estimation in linear regression.

o REML estimation for marginal model.
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e E T o Univariate N/

@ Goal: Estimate the variance of a N'(u, 02) based on a random sample
Y1,Y5,...,Y,.

@ MLE Solution(s):

o When p is known:

n

1
62 = - > (¥i — p)> —> unbiased estimator
i=1

@ When p is not known:

1 n
~2 o\ 2 . .

= — E Y;—Y b d estimato
o ni 1( ) — bilased estimator
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REML

E Unbiased Variance Estimator

@ The expected value of 2 is

-1
E(6?) = =252
n

@ The MLE estimate is too small, because we estimated pu.

@ The unbiased estimator of o2 is

n—14%
=1

@ The unbiased estimator is an REML estimate.
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REML

E General Procedure

To get an unbiased estimate of o2, it must not depend on the
mean.

@ n Observations Y; ~ N (1, 02) i.i.d.
° (Y17Y27 oo 7Yn)/ =Y ~ N(/'Lln?UQIn)

1 Jz
1 3
o ul, =p . = .
1 %
@ Covariance matrix,
10 0 0?2 0 0
01 0 0 o2 0
oI, = o? . = ] .
: 0 : : 0
00 1 0 0 o2
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REML

JI REML General Procedure (continued)

Let A equal an (n x (n — 1)) matrix with (n-1)
linearly independent columns that are orthogonal to 1,,.

e.g.,
1 11 ... 1
-1 00 ... 0
A=| 0o -1 0 0
0 00 ... -1

Any matrix A that meets these two requirements will work.
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REML

JI REML General Procedure (continued)

Define the vector W as
W =AY

The vector W has (n — 1) elements that are “error contrasts.”
e.g.,

1 -1 0 0 Y,
1 0 -1 0 Yy ?:?
W =AY — 1 0 0 0 Y; - 1_ 3
1 0 0 ... —1 Y, Yi=Yn
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REML

JI REML General Procedure (continued)

Y1-Y;

Y1-Y;3
wW=AY = )

Yl_Yn

The distribution of W is
W ~ N(0,02A’A)

(remember the little extra linear algebra in notes on random intercept and
slope models?)

So we now have a vector where we know what the mean of the variables
equals.
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REML

JI REML General Procedure (continued)

Since we know the mean of W = AY and W has a (multivariate) normal
distribution, the MLE of o2 is

o YAAA)'AY

n—1

@ which is just a complex way of writing s2,
@ This is the REML estimator of 2.

@ The REML estimator is based on (n — 1) error contrasts; that is, it's
based on what's left over after you get rid of (estimate) the mean.
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REML

E Residual Variance Estimation

In Linear Regression

Goal: Estimate the variance of the residual o2 in standard linear regression,
Y =XB+e¢
where

@ X is an (n x p) design matrix.
@ Bisa (p x 1) vector of regression parameters.
@ €isa (n x 1) vector of residuals (errors).

® € ~N(0,0%I) i.id.
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REML

JL REML in Linear Regression

@ The MLE (which is also the ordinary least square estimate) of the
regression coefficients is

f=(X'X)"'X'Y
@ We can estimate the residuals by
=Y -Xf=Y -X(X'X)"'X'Y

@ The MLE estimate of o2 is the variance of the estimated residuals:
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JI REML & Linear Regression (continued)

...in terms of linear algebra, the MLE estimate of o2 (the variance of the
estimated residuals)

o €e 1 o oo oA
& = —=-(Y-XB)(Y-XB)

— %(Y - X(X'X)'X'Y)(Y - X(X'X)'X'Y)

This estimator of o2 is too small or “downward biased”.
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JI REML & Linear Regression (continued)

The unbiased estimator of the variance of the estimated residuals, which is
the REML estimator, is

2 = €€
n—p
B B
e N e e
Y- XX'X)'XY)(Y - X (X'X)'X'Y)
n—p
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JI REML & Linear Regression (continued)

The REML estimator s? can be obtained using the general method:

Get a matrix A that is (n X (n — p)) where the columns are linearly
independent and orthogonal to the columns of the design matrix X.

Define a vector W = A’Y of “error contrasts”’, so W ~ normal
where the mean of W does not depend on the mean of Y. The only

unknown parameter of the distribution for W is o2.

When you maximize the likelihood equations for W, you get
s? = (€€)/(n—p).
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Il REML & Linear Mixed Model

@ In the marginal models for HLMs, the mean depends on all the ~'s.
So, in estimating the 7's and o2, we want to take into account the
loss of degrees of freedom in estimating the v's.

@ We can't just compute a variance estimate and figure out what the
bias factor is and then correct our estimate so that it is no longer
biased, which is all we really would have needed to do in the two
previous sections.

@ We have to use the error contrast method.
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REML

Il REML & Linear Mixed Model

Step 1: “Stack” all level 1 regressions,

Y, X1 Z; 0 ... O U, R
Y5 X 0 Z 0 U, Ry
. - : I‘+ : . . : + :
Yy XN 0 0 ... Zy Uy Ry

Y = XT+ZU +R

This Y is an (n4 x 1) vector with distribution

Y ~ N (XT,V)
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I Step 1 (continued)

where V' is an (ny X n4) covariance matrix for all the data,

V = ZTZ +5°I,,

(Z,TZ} + o°1) 0 e 0
0 (Z,TZ5+ o*I) ... 0
0 0 ... (ZNTZ) + 1)
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REML

I Steps 2 & 3 (REML of Linear Mixed Model)

Step 2: Using any (n4 x (n4y — p)) matrix with linearly independent
columns and orthogonal to the columns of the fixed effects design matrix
X, define error contrasts,

W =AY
Note: p = number of fixed effects (i.e., ¥'s).
We now have W which is an (ny x 1) vector such that

W ~N(0,A'VA).

Step 3 The error contrasts W do not depend on the means (i.e., I'), so
use maximum likelihood estimation to find T and o2.

@ These maximum likelihood estimates of T" and ¢ do not depend on
the specific choice of A.
@ Estimation of fixed effects is a separate step.
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Comparison

JL Comparison of MLE & REML

By example using the NELS88 data.

@ Specific data: Random samples of N = 20, 50, and 100 schools, as
well as full N = 1003 schools.

@ Use both (full) ML and REML estimation of

o Model 1: Random intercept with only one fixed effect.
o Model 2: Random intercept and slope with two fixed effects.

@ Model 3: Random intercept and slope with 6 fixed effects and a
cross-level interaction.
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Comparison

i Design of Mini-Study

N =20 N =50 N =100 N = 1003
Model ML REML | ML REML | ML REML | ML REML
1. Random
intercept

2. Random
intercept

and slope

3. Random
intercept &
slope with 6
fixed effects

@ | tried random samples of N = 10, but had lots of trouble fitting
complex model.

@ The random sample of N = 50 reported was my second attempt
sample. Model 2 fit to my initial random sample of N = 50 would not
converge for ML but it did for REM L.
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Comparison

i Why We Look at Toy Data

By “toy data”, | mean here hypothetical, simulated, or sampled.

Thursday May 08, 2008
§
1 DIDNT HAVE ANY 1 STUDIES HAVE SHOWN
ACCURATE NUMBERS |¢ THAT ACCURATE
SO T JUST MADE UP £| NUMBERS ARENT ANY EIGHTY-
THIS ONE. 2| MORE USEFUL THAN THE SEVEN.
8 ONES YOU MAKE UP.

)

3 3 |
[ 4,629,873

www.dilbert.com

5808 ©2008Scott Adams, Inc./Dist. by UFS, inc.
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Comparison

JL Mini-Study: Model 1

o Level 1:
(math);; = Boj + Ryj

@ Level 2:
Boj = Y00 + Uo;

@ Linear Mixed Model:

(math)ij = Y00 + U()j + Rij

() =((5)-(F )

where
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Comparison

E Results for Model 1

Fixed Effects
N =20

N =50 N =100 N =1003
ML REML| ML REML| ML REML| ML REML |
Yoo | 50.74 50.74 | 50.91 50.91 [50.54 50.54 | 50.80 50.80
(1.08) (1.11) | (.66) (.66) | (.55) (.55) | (.18) (.18)

@ Ago's are very similar. They aren't exactly the same, differences show
up in the third decimal point.

@ The SE's for 4gg are smaller with ML, but differences get smaller with
larger samples.

C.J. Anderson (lllinois)
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Comparison

E Results for Model 1

Random Effects
N =20 N =50 N =100 N = 1003

ML REML| ML REML| ML REML| ML REML |
¢ | 19.62 2083 [ 1727 17.72 | 26.11 2641 | 2655 26.58
(7.34) (7.93) | (429) (443) | (426) (4.32) | (1.35) (1.37)
0?8332 8333 | 7755 7755 | 77.77 7778 | 76.62 76.62
(5.50) (5.50) | (3.48) (3.48) | (2.43) (243) | (.716)  (.76)

o 7¢'s are smaller when use ML.

2

@ §°'s are smaller when use ML (to 2nd decimal point).

@ The SE's for %3 and 62 are smaller with ML, but the differences
between the SE's from ML and REML get smaller with larger samples.
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Comparison

JL Mini-Study: Model 2

o Level 1:
(math)ij = 50]' + ﬂlj(homework)ij + Rij
o Level 2:
Boj = 00 + 7Yo01(ratio); + Uy,
Bi; = 70+ Uy

@ Linear Mixed Model:

(math)i; =700 + 710(homew);; + o1 (ratio); + Uo; + Uyj(homew);; + R;;

where
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Comparison

i Mini-Study Results: Model 2

Fixed Effects

N =20 N =50 N =100 N = 1003

ML REML| ML REML| ML REML| ML REML |
intercept | 52.72 52.60 | 48.11 4812 | 4030 49.30 | 5152 5152
(2.86) (2.99) | (2.10) (2.15) | (229) (2.32) | (61) (.61)
homewk | 1.61  1.61 | 174 174 | 150 150 | 1.47 147
(34)  (35) | (20) (20) | (.14) (.14) | (.05) (.05)
ratio ~30 -.30 | —04 —04 | —09 —.09 | —25 —25
(15)  (15) | (11)  (12) | (13)  (.13) | (.03)  (.03)

@ 4's pretty similar for given N.

@ SE for 4's small with ML, but differences get smaller with larger V.
@ 71 for ratio n.s. until N = 1003.
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Comparison

i Mini-Study Results: Model 2

Random Effects

N =20 N =50 N =100 N =1003
ML REML| ML REML| ML REML| ML REML |
70 | 318 443 | 15675 16.70 | 18.01 1858 | 23.27 23.33
(3.72) (439) | (5.25) (5.54) | (4.03) (4.16) | (1.53) (1.53)

7o | 213 203 | —87 —.97 | 101 99 | —90 —.91
(1.46) (1.60) | (1.13) (1.18) | (.66)  (.73) | (.30)  (.31)
2| 57 72 | 25 31 00 02 | 52 52
(75)  (82) | (:38)  (.40) . (25) | .10)  (.10)

o2 | 7616 76.16 | 7152 7149 | 73.74 7373 | 7174 7174
(5.13) (5.13) | (329) (3.29) | (2.31) (2.35) | (72) (.72)
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Comparison

E Random Effects: Model 2

@ Variance estimates (72, 72, 62) are smaller with ML.

@ SE's for the 7's and o2 are smaller with ML.
@ All SE's get smaller with larger N.
@ For N = 100, we have some trouble:

o with ML, 72 = 1.77E — 17 and no standard error. Why don’t we get
this with REML?

@ In the SAS/LOG for both ML and REML, ¢ ‘Estimated ( matrix
is not positive definite.’’
(SAS G matrix is our T matrix)

C.J. Anderson (lllinois) Estimation: Problems & Solutions 56.56/ 106



Comparison

X Random Effects: Model 2, N = 100

Using the REML results. ..
T 18.58 .99 N 1.00 1.56
N 99 .02 156 1.00

This result is fine for the marginal model for math scores, but it's not OK
for HLM/Linear Mixed Model. This result is inconsistent with our
interpretation of 7's.
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Comparison

I Mini-Study Model 3

o Level 1:

(math);; = Boj + B1;(homework);; + (2;(cSES;;) + Ri;

@ Level 2:
Bo;j = o0+ "o1(ratio); + vo2(public); + yog(SI_ES)]- + Uy,
Bi; = o+ yu(ratio); + Uy
Boj = 720

@ Linear Mixed Model:

(math)ij = Yoo + wlo(homew)ij + ’yg()(CSES)Z‘]‘
+701(ratio) ; + y03(SES;)
+711(ratio) j(homew);;

—|—U0j + Ulj(homew),-j + Rij
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Comparison

JL Model 3: Mini-Study Results

@ With these data and the considerably more complex model, | got the
same basic pattern of results.

@ With more complex model and random sample N = 100 and ML, |
was unable to get the model to converge.

@ | was expecting to get more differences in terms of the values of
estimated fixed than | actually got when | added more fixed effects.
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Comparison

i Summary Comparison of REML & MLE

@ Maximum Likelihood Principle:
Both are based on this, so both yield estimators that are

o Consistent
o Efficient
@ Asymptotic normal

@ Variance Components:
The REML estimates are larger than the ML estimates.

@ Fixed Effects

o MLE provides estimates of fixed effects, while REML requires an extra
step.

o For univariate normal and standard linear regression, MLE of the mean
and variance are independent.

@ The estimated mean is the same under MLE and REML; that is, MLE or
REML could be used to estimate the variance and the estimated means
wouldn't change.
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Comparison

i Comparison of REML & MLE: Fixed Effects

@ For the linear mixed model, the estimation of mean and variance are
not independent, because

~ N A _1 N A
=) xj37'X; | Y X2y,
j=1 j=1

where 3 = (Z,TZ} + 6°I).

@ The vector of fixed effects is not the same under MLE and REML
(even though the REML estimations is only with respect to the
variance components).

@ With balanced designs, the REML estimators are the same as classical
ANOVA-type ones and therefore they don't depend on assumption of
normality.

C.J. Anderson (lllinois) Estimation: Problems & Solutions 61.61/ 106



Comparison

i Comparison of REML & ML: Std Errors

@ Which is better (i.e., smaller standard errors) depends on number of
marco units, number of fixed effects, and the actual value of the
variance parameters.

@ If N(number of fixed effects) is “large”, then
@ MLE better when number of fixed effects < 4.

o REML better when number of fixed effects > 4.

® The greater the number of fixed effects, the greater the difference
between REML and ML.
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Comparison

i Comparison of REML & ML: Deviance

—2LoglLike or “deviance.”

These values will differ and only some conditional likelihood ratio tests are
valid for REML whereas they are valid for MLE.. .. more on this in next
section of notes (on statistical inference)
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Algorithms

IL Model Fitting Procedures: Algorithms

@ All are iterative.

@ A "Parameter Space” is the possible values for the model parameters
(i.e., v's, 7's and 02.)
The possible values of (consistent with HLM)

@ 7's are Real numbers
o 72 are non-negative real numbers
@ 7 (k # 1) are Real numbers

@ 0?2 are non-negative real numbers.

“Boundary” of the parameter space.

Sometimes the MLE's are outside the parameter space, in which case
the estimates value is set equal to the boundary value (e.g., 72 = 0).
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Algorithms

I Four Major Algorithms

Newton-Raphson.

Fisher Scoring.

lterative Generalized Least Squares (IGLS).

Expectation-Maximization.
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Algorithms

i Newton-Raphson

@ lterative algorithm for solving non-linear equations.
@ SAS default (ridge-stabilized version)
@ It converges to a unique maximum of the likelihood function.

@ It can be used even when the parameter space if not “open;” but in
this case, there is no guarantee that you have a global maximum.
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Algorithms

i Newton-Raphson: How it works

(1) Start with an initial guess of the solution (parameters).

(2) Approximates the function to be maximized in the neighborhood of
the initial (current) guess by a second degree polynomial.

(3) Find the maximum of the polynomial to get better guesses for the
parameters.

(4) Using new estimates, go back to step 2 and repeat until converge.
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Algorithms

JL Newton-Ra phson: Visual

Cycle of Newton— Raphson Algorithm

Hax imum

,//‘;7‘\;\

2nd degree
polynomial
approx

Value of Function

T T T theta? tfﬁeta_l

—-13 —38 -3 2 7 12

Possible Parameter Values

C.J. Anderson (lllinois) Estimation: Problems & Solutions 68.68/ 106



Algorithms

i Newton-Raphson: Some Math

Let 8 = vector of parameters, for example

2 2\/
0= (7007'7017"'77—07"'70-) .

o Get starting values for parameters.
@ Up-date parameter estimates using

Onew =0y — H'A

@ Check for convergence.
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Algorithms

wton-Raphson: Up-dating Equation

Onew = 90|d —-H'A

@ Onew are up-dated parameter estimates.
@ 0)q are the current parameter estimates.

@ A is “Score” vector.

o Vector of first partial derivatives.
o Computed using 04
@ It should equal O when you have the MLEs.

@ H is the "Hessian" matrix.

Matrix of second partial derivatives.

Computed using.00|d. . . . .

Sample Information matrix = —H (information matrix = —E(H)).
After convergence, —H ~1 contains estimates of the variances and
covariances of parameter estimates.

¢ ¢ ¢ ¢
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Algorithms

I Fisher Scoring

@ (Bascially) Same as Newton-Raphson, but uses the Expected value of
the Hessian matrix.

@ Overall, preference for Newton-Raphson because it's easier to deal with
sample H.

@ Sometimes works when Newton-Raphson doesn't, especially when
fitting complex covariance structures.

@ It's best that the final iterations are done by Newton-Raphson so that
the final solution uses the sample Hessian matrix (i.e., the SE's are
based on data rather than on expectations) — especially when there is
missing data in longitudinal case (see Verbeke & Molenbergs, Chapter
21).

@ If don't have random effects, then estimation of the regression models
by Newton-Raphson, Fisher scoring and ordinary least squares are the
same.
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Algorithms

JL Iterative Generalized Least Squares

Our linear mixed model is

Y=XT+ZU + R

where
Y11
Y21
. Y1 U,
: Yo U,
Y=| yu1 | = . ; U= . ; etc
Y12 ’ )
. YN Un
y’l’l]'N

with our usual normality and independence assumptions for U; and R.
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Algorithms

JL Iterative Generalized Least Squares (continued)

If we knew T and o2, then we could construct the covariance matrix for Y,

V = (ZTZ' + o*I)

We could use Generalized Least Squares to estimate T',

r=Xv1ix)'x'v-ly
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Algorithms

L IGLS Algorithm

@ Step 0: Using OLS regression to get initial estimate of V.

@ Step 1: Use generalized least squares (GLS) to estimate the fixed
effects,

= (X'VIixX)'x'v-ly

o Step 2: Compute “total” residuals Y =Y — XI' and YY".
According to our model,

Y- XI'=ZU+R
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Algorithms

I IGLS Algorithm (continued)

@ Step 3: Rearrange elements of Y'Y’ into a vector and express these
residuals as a linear model and use GLS to get new estimates of the
elements of T' and o2.

@ Step 4: Check for convergence.

o If not, go back to Step 1.

o If yes, get estimates of standard errors of the regression parameters
using the estimate of V' from the least cycle (i.e., treat V as if it is
known).
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Algorithms

I Little Example of IGLS: Step 1

Suppose
Yij = 00 + 1025 + Uoj + Ry

where Up; ~ N(0,72) and R;; ~ N(0,0?) i.i.d.
Estimate the 4's using T' = (X'V 1 X)"' X'V ~1Y, where

Yi I an
Yo I an
: : : Y10
YnN,N 1 Tnyn,N
and
3, 0 0

where 2] = Z]TZJI + O'QI]'
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Algorithms

I Little Example of IGLS: Step 2 & 3

@ Compute vector of raw residuals,

Y =Y — (XT)
That is
Uij = Yij — (Joo + Y10745)
@ Compute cross-products, §;;yij, for all i and j, which are the
elements of YY"

o Expectations of elements of YY”:
@ Diagonals: E(ﬂijgij) = T02 +0?
o Same group, different individuals: E(;;7i;) = 78

o Different groups: E(i;gi;/) =0
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Algorithms

IT Little Example of IGLS: Step 3 (continued)

@ Re-arrange elements of YY" into a vector

B\ (e
Y21911 8

el ¢ _ :
Y12Y11 0
37721N,N 5 4 0

@ We know have a linear model for 7 and o2.
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Algorithms

IT Little Example of IGLS: Step 3 (continued)

@ Linear model for 7 and o2

I 1 1
Y21911 1 0
- 2
-~ = T + o
Y12911 of o 0
U N 1 1

S—— ——
block diagonals & diagonals of V/

@ Use GLS to estimate this model.
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Algorithms

I Comments Regarding IGLS

@ Can be used to get REML's.
@ Implemented in MLwin.

@ The normality assumption for U;'s and RR;;'s permits expressing the
variances and covariances of the Y;;'s as a linear function of the 7's
and o2.

@ The parameter estimates are the MLE's if the normality assumption
holds.

@ If normality does not hold, then

o Parameters estimates are consistent, but not efficient.
o Estimated standard errors are not consistent.
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Algorithms

i Expectation-Maximization, EM

@ Although this is the “old” method of fitting variance components
models, it is still useful, especially when

@ Have complicated likelihood functions.

o Get good starting values for Newton-Raphson and/or Fisher scoring
(direct likelihood maximization methods).

@ Data are not missing at random (pertains to longitudinal data).

@ Incomplete data.
@ Either missing or latent.
@ In HLM context, we have latent or unobserved random variables — the
Uj's and R;j's.
@ Complete data.
The observed data and the unobserved values of the random effects.
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Algorithms

I Expectation-Maximization, EM (continued)

Repeat two steps until convergence achieved:

(1) Expectation or “E-Step”:

Given current values of parameters, compute the expected value of
the missing data, so that you now have complete data.

(2) Maximization or “The M—Step":

Standard maximization.

Drawback: EM tends to be slow to converge.
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E Estimation Problems

They are caused by estimating variance components (iterative procedures
needed because we have these).

Problems encountered:
@ Lack of convergence
@ Boundary values.
o T not positive definite.
@ Hessian not positive definite.

Things to look for and ways to deal with them.. ..

According to Singer & Willet, the source of the estimation problems is
data are unbalanced data.
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L Small Variance Components

@ Variances components depend on the scale of the explanatory
variables.

@ We can transform explanatory variables so that variance estimates will
be larger. e.g.,

Level 1:

Yii = Boj+ Bz + Rij
Boj + 108y, ( 10) + Ry
Boj + Bijzi; + Rij

where R;j ~ N(0,0?) i.i.d.
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L Small Variance Components

Level 2:
Boj = 700+ Y0125 + Vo

Bi; = 10(y10 + 1125 + Uy)
Yio + 1% + Ul

If the covariance matrix for U = (Uy;, U1;)’ equals
2
T T10
T= o L),

Tio Ti

Then the covariance matrix for (Upj, U{‘j)’ is
—— Tg 10719 _ Tg T _
107y 10077 T

@ The estimated variance 72* is 100 times larger when you use z;;/10 as
the explanatory variable instead of x;;.
@ Using transformed explanatory variable xj; moves the solution away

from the “boundary” of the parameter space.
85.85/ 106
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IL Model Miss-specification & Zero Variances

The HLM is more restrictive than the marginal model in terms of what
parameters can equal, which can cause problems.

@ Zero variances

@ Negative variances

@ Correlations greater than 1.

Example 5.3 from Snijders & Bosker.

In this example they fit a very complex model with

@ 2 micro level variables.

@ 3 macro level variables.

@ Random intercept and 2 random slopes.
To get any estimates (i.e., so they get a solution that converges), Snijder &
Bosker fixed 719 = 0 and estimated that 72 = 7y = 0.

Without fixing 719 = 0, no convergence.
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JL Zero Variances: SAS/MIXED

To replicate their results in SAS/MIXED, first we don't restrict 7'22, T12 and
Toq to equal zero:

PROC MIXED data=center noclprint covtest method=ML;
CLASS schoolINR;

MODEL langPOST= olQ_verb oses ogrplQ ogrpsize mixedgra
olQ_verb*ogrplQ olQ_verb*ogrpsize olQ_verb*mixedgra
oses*ogrplQ oses*ogrpsize oses*mixedgra /solution;

RANDOM int olQ_verb oses / type=un sub=schoolNR;
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E Results from SAS

WARNING: Did not converge.
Covariance Parameter Values

At Last lteration

Cov Parm  Subject  Estimate
UN(1,1)  schoolNR 7.0404

UN(2,1)  schoolNR  -0.3180
UN(2,2)  schoolNR 0.08614
UN(3,1)  schoolNR -0.02363
UN(3,2)  schoolNR -0.03093
UN(3,3)  schoolNR 0
Residual 39.9664
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JL Zero Variances: SAS/MIXED

PARMS (7) ( -.3) (.1) (0) (0) (0) (40) / eqcons=4, 5, 6;
@ PARMS allows you to specify starting values.

@ The order to give starting values shown in the previous slide, i.e.,

2 2 2 2
705 701, 71, T02, 712, T9, g

@ Can use either EQCONS= or HOLD= options;

o EQCONS= Equality Constraints

@ HOLD= set values are starting values.

C.J. Anderson (lllinois) Estimation: Problems & Solutions 89.89/ 106



JL MIXED Results with PARMS

Parameter Search
CovP1 CovP2 CovP3 CovP4 CovP5 CovP6 CovP7 LogLike

7.00 -0.30 0.10 0 0 0 40.00 -7545.9166
-2 Log Like
15091.8333
Iteration History
Iteration Evaluations -2 Log Like Criterion
1 2 15089.76773914  0.00004382
2 1 15089.51198275 0.00000067

3 1 15089.50829394  0.00000000
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JL MIXED Results with PARMS

Covariance Parameter Estimates

Standard Z
Cov Parm  Estimate Error  Value PrZ
UN(1,1) 7.4859 1.2511 5.98 < .0001
UN(2,1) —0.6447 0.2563 —2.51  0.0119
UN(2,2) 0.1154  0.08246 1.40  0.0809
UN(3,1) 0
UN(3,2) 0
UN(3,3) 0

Residual 39.3518 1.2268  32.08 < .0001

Convergence criteria met.

OK then?
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JL MIXED Results with PARMS

Not OK.

Checking the SAS LOG window. ..

NOTE: Convergence criteria met.
NOTE: Estimated G matrix is not positive definite.

For a much better model. . .see Table 5.4
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i Negative “Variances”

The ML estimates may be outside the parameter space for an HLM.

e.g., Remember that "bad” model using the HSB data?

(math)i; = 700 +710(cSES)i; + 701 (SES);
+Uo; + Ut;j(cSES)yj + Uz;(SES); + Ry
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i Negative “Variances”

The implied marginal model

(math)ij ~ N(/Lj, Uj)

where

#5 = Y00 + 710(cSES)i; + 701 (SES);
and

vj = Tg + 2701 (CSES)z’j + 27'02(SES)J'
+27‘12(CSES)U (E)]
+77(cSES); + 75 (SES); + o

@ The 7's and o2 can be positive or negative just so long as vj is
positive; however,

@ By default, SAS/MIXED restricts T,f's and o2 to be non-negative.

@ If this restriction is removed, then the model converges.
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JL Bad Model for HSB: Input

Input:

PROC MIXED data=hsb noclprint covtest method=reml
|nobound
CLASS id;
MODEL mathach = ¢SES meanSES / solution;
RANDOM intercept cSES meanSES
/ subject=id type=un;
RUN;

“nobound” removes the restriction that 7',? and 02 be non-negative.

C.J. Anderson (lllinois) Estimation: Problems & Solutions 95.95/ 106



JL Bad Model for HSB: Output

Fixed Effects Random Effects
estimate SE estimate SE
intercept oo 12.64 .15 intercept 74 3.08 52
cSES Yo1 2.19 13 10 -.35 .26
meanses o2 5.83 31 cSES 7'12 .69 .28
720 —.13 .40
To1 —.72 .56
T8 —222 1.26

o? 36.71 .63

This is a “bad” HLM — we get a good HLM if we remove Us;.
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E Correlations Greater Than 1

We have seen examples of this:

@ Random Sample from NELS88 for N = 100 (random slope &
intercept model):

Using the REML results. ..

G (1838 99N (100 156
L 99 .02 ~\ 156 1.00

@ Computer lab/homework. . . be on the look out for this.
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L Fisher Scoring in SAS

| PROC MIXED ...SCORING=<number> ;|
From SAS/MIXED documentation:

@ SCORING=<number> requests that Fisher scoring be used in
association with the estimation method up to iteration number, which
is by default 0. When you use the SCORING= options and PROC
MIXED converges without stopping the scoring algorithm, PROC
MIXED uses the expected Hessian matrix to compute approximate
standard errors for the covariance parameters instead of the observed
Hessian. The output from the ASYCOV and ASYCORR options is
similarly adjusted.
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Summary

i Summary: Estimation

@ Maximum likelihood equations and principle.
@ Methods:

@ MLE — biased but it is important for inference.
@ REML — unbiased and sometimes work when MLE doesn't.

@ Algorithms:
@ Newton-Raphson
Fisher scoring
Iterated Generalize Least Squares (IGLS)
EM
Bayesian

¢ € ¢ ¢

@ Problems & Solutions....
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Summary

i Summary: Problems & Solutions

Numerical problems arise from the fact that we're estimating the variance
components.

These problems include:
@ Failure to converge.
@ Estimates that do not conform to our HLM.
Possible ways to fix numerical problems:
@ Transform explanatory variables.
Allow negative “variances”.
Use REML instead of ML.
Use Fisher scoring, IGLS or EM instead of Newton-Raphson.

Correct model specification!

Use Bayesian esian estimation
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i Bayesian Estimation

by example using the NELS data with 23 schools.
See html document on web-site: “587Work.html”.

If you want to run the R script, you will need to install STAN and the
brms package. Instructions for this can be found on the web-site. Follow
the instructions exactly.
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E The Basics

From Bayes theorem

_ pW|0)p(0)

o< p(yl0)p(0)

1y is data.
6 is unknown parameter(s).

y|@) is sample model, the data model, or the likelihood function.

|
0)
)
|

is the prior distribution of the parameter 6.

y) is the probability of data or evidence.

p(
p(
p(
p(0|y) is the posterior distribution of the parameter given data.

C.J. Anderson (lllinois) Estimation: Problems & Solutions 102.102/ 106



JL Random Effects Models are Naturally Bayesian

Yij = Boj + Bijrij + Rij

and

Boj = o0+ Uog;
Bij = o+ Ui

or with assumptions on random variables,
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@ Analytic — derive formula and “plug-n-chug”
@ Grid method

@ Monte Carlo Markov Chain — these are all special cases of
Metropolis-Hastings Algorithm.

The major ones:
o Gibbs sampling (JAGS or just another gibbs sampler)
o Metropolis
@ Hamletonian Sampling and STAN (brms is wrapper function for rstan)
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E Metroplois-Hastings Algorthm

Draw auxiliary variables ¢* ~
then Leapfrog to get 0*

|
Compute ¥ = min (1 %)
\ Iifr=1 Ifr <1
Set 0t = 6* 4 r>u Draw wu from
Uniform(0,1)
Ifr <u
|Set 0t = g1
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i Example Simmulation

https://chi-feng.github.io/mcmc-demo/app.html
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