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Chapter 1

Multilevel Modeling of Categorical Response
Variables

Carolyn J. Anderson
University of Illinois, Urbana-Champaign

Jee-Seon Kim & Bryan S. B. Keller
University of Wisconsin, Madison

The most common type of item found on large-scale surveys has response options that are categor-
ical. Models for binary, ordinal and nominal variables are relatively common and well developed
(e.g., Agresti, 2002, 2007; McCullagh and Nelder, 1989; Powers and Xie, 1999; Fahrmeir and Tutz,
2001); however, three major complications arise when modeling responses from large-scale surveys
that employ a complex sampling design. These challenges result from the fact that data are typically
clustered, the probability of selection is not equal for all units, and missing data is the norm rather
than the exception. To deal with the clustered or nested structure and to permit the investigation of
context on individuals’ responses, extensions of standard models for categorical data to clustered
categorical data are presented. The particular random effects models presented in this chapter are
logistic regression models for dichotomous responses, multinomial logistic regression models for
nominal responses, and continuation ratios, adjacent categories, proportional odds and partially pro-
portional odds models for ordinal data. The development of multilevel versions of these models and
software to fit them has progressed to the point that the models are can be fit to data using a number
of common software programs.

The second modification to the routine use of standard models for categorical data is dealing
with unequal probability sampling of primary sampling units (e.g., schools) and secondary units
(e.g., students). Ignoring the sample design can lead to biased results. Weighting of data may be
necessary at each level of the model. The theory for adding weights to multilevel models is rela-
tively straightforward (Pfeffermann et al., 1998; Asparouhov and Muthén, 2006; Grilli and Pratesi,
2004; Rabe-Hesketh and Skronkal, 2006); however, the availability of software for discrete data that
implements the theory is much less common. Design weights are incorporated during estimation and
the estimated parameters are based on maximizing the pseudolikelihood rather than maximizing the
likelihood. The estimating equations for discrete models are presented in this chapter, because they
open up alternative software options with minimal programming in statistical software programs.

The third issue when modeling data from large-scale surveys is the problem of missing data.
Deleting cases that have missing data can lead to biased parameter estimates and is also very waste-
ful. Although numerous methods have been developed and are regularly used to deal with missing
data, the options for missing data when data are hierarchically structured are limited. Multiple impu-
tation for continuous (normal) data has been developed by Shin and Raudenbush (2007, 2010) and
is described in Chapter ??. Van Buuren (2011, 2012) presents a method based on fully conditionally
specified models that can be used to impute missing values for both continuous and discrete vari-
ables. Unfortunately, this method has only been developed for imputing values at the lowest level
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2 MULTILEVEL MODELING OF CATEGORICAL RESPONSE VARIABLES

Table 1.1 The distribution of response options to the item regarding use of the Internet to look up information
for school.

Cumulative
Response Frequency Percent percent
Every day or almost every day 746 14.94 14.94
Once or twice a week 1240 24.83 39.77
Once or twice a month 1377 27.57 67.34
Never or almost never 1631 32.66 100.00

of hierarchically structured data. At the possible cost of reduced efficiency, our approach to missing
data imputes data at Level 2 and for each Level 1 unit thus preserving the multilevel structure.

In the first section of this chapter, the data used to illustrate the models and methodology is de-
scribed along with how weights are computed and how missing data were imputed. In the following
three sections, Sections 1.2, 1.3 and 1.4, models for dichotomous responses, nominal responses and
ordinal responses, respectively, are presented along with example applications to the data described
in Section 1.1. Current software options are described briefly in Section 1.5. The example input code
for fitting models to data using Mplus and SAS and a short document explaining the input code can
be downloaded from http://faculty.ed.uiuc.edu/cja/homepage. Lastly, we conclude in Section 1.6
with a summary of challenges in applications of models presented in this chapter.

1.1 The Data

The models presented in this chapter are illustrated using the United States data from the 2006
Progress in International Reading Literacy Study (PIRLS). The data are from a complex two-stage
cluster sampling design with unequal probability weighting. Students are nested within classrooms
(teachers) and classes are nested within schools. Although some schools have students from multiple
classrooms, most schools have only one classroom in the study. Therefore, the data are treated as
consisting of two levels: students within schools. There are M = 182 schools with a total of N = 5,128
students1. The number of students per school n j ranges from 7 to 66 with an average of 27. Data
from the fourth grade student questionnaire and the school questionnaire are used here.

1.1.1 Response and Explanatory variables

Given the increasing role of technology and the Internet in society, our goal is to study how various
student and school factors are related to Internet usage, in particular the use of the Internet as a
source of information for school related work. The response or “dependent” variable is an item
asking students how often they use the Internet to “Look up information for school” (Schnet). The
response options are “Every day or almost every day”, “Once or twice a week”, “Once or twice a
month”, and “Never or almost never”. The distribution of the responses is given in Table 1.1.1. The
response options are discrete with a natural ordering. All four categories are used to illustrate the
nominal and ordinal models, and to illustrate models for binary logistic regression the responses are
dichotomized as

Yi j =
{

1 If student i in school j uses the Internet at least once a week
0 If student i in school j uses the Internet at most twice a month .

The within school or Level 1 explanatory variables include the students’ gender (Girl), how

1This total reflects the fact that one school was excluded that had no responses on the school questionnaire, 9 students
were deleted who has no responses on the student questionnaire, and 3 students were deleted who has missing data but the
imputation method approach used failed due to too few students from their schools.
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Table 1.2 Basic summary statistics and information about explanatory variables used the examples. Values
are based on non-missing data.

Mean or Std
Variable Coding percent dev Min Max
Within or Level 1 Variables

Girl

{
1 girl
0 boy

50.00%
50.00%

TimeRdg How much time per day spent reading for home-
work (ordinal but treated as quantitative)

2.34 .75 1 4

ScreenTime Mean of 2 items regarding how much time per day
spent watching TV, videos, electronic games (high
score means more time)

2.34 1.13 0 4

Between or Level 2 Variables
NperComp The number of fourth grade students per computer

(number)
3.05 3.30 .44 25.25

Shortages Mean of 14 items dealing with various shortages
(high score means more shortages)

0.59 .54 0 3.0

Urban

{
1 Urban school
0 Suburban or rural

29.44%
70.65%

Suburban

{
1 Suburban school
0 Urban or rural

42.78%
57.22%

Rural

{
1 Rural school
0 Urban or suburan

27.78%
72.22%

AllFree

{
1 All students free/reduced price lunch
0 Some or none

11.67%
83.33%

SomeFree

{
1 Some students free/reduced price lunch
0 All or none

79.44%
20.56%

NoneFree

{
1 Few students free/reduced price lunch
0 All or some

8.89%
91.11%

much time a student spends reading for homework (TimeRdg), and the amount of time per day a
student spends watching TV, videos, playing computer games, etc. (ScreenTime). The between
school or Level 2 explanatory variables include the number of fourth grade students per computer
designated for fourth grade student use (NperComp), shortages of materials and staff at the school
(Shortages), the location of the school (Urban, Suburban, Rural), and whether some, all or no
students at a school receive free or reduced price lunches (AllFree, SomeFree, None). To ensure
the proper interpretation of model results, more information about these variables and basic sum-
mary statistics are given in Table 1.1.1.
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1.1.2 Weights

The recommendations for weights given by Rutkowski et al. (2010) are used here. The weights for
students (Level 1 or secondary units) will be computed as the product of student and class weights:

w1|i jℓ = (WFi jℓ×WAi jℓ)︸ ︷︷ ︸
student i

(WFjℓ×WA j)︸ ︷︷ ︸
classℓ

, (1.1)

where WFi jℓ is the inverse of the probability of selection of student i and class ℓ from school j, WFjℓ
is the inverse of the probability of selection of class ℓ from school j, WAi jℓ is the weight adjustment
for non-response for student i in class ℓ from school j, and WA jℓ is the weight adjustment for non-
response for class ℓ from school j. The weight adjustments are for those students and classes that
were selected but chose not to participate (Heeringa et al., 2010; Rutkowski et al., 2010). The school
weights used are

w2| j = WFj ×WA j, (1.2)

where WFj is the inverse of the probability of selecting school j and WA j is the weight adjustment
for school j for non-response.

There are two opinions on the use of sampling or design weights in an analysis. One approach
is design-based and advocates using sampling weights in any analysis of the data. The other ap-
proach is model-based and advocates not using the sampling weights. Snijders and Bosker (2012)
discusses this issue in the context of multilevel models. The main argument in favor of a model-
based approach is that the sample design is irrelevant when the model is the “true” one and the
sampling procedure is independent of the probability model. If this is the case, taking into account
sampling weights results in a loss of efficiency and less precise estimates (Heeringa et al., 2010).
The main argument for a design-based approach is that parameter estimates could be seriously bi-
ased, especially if the sampling weights vary widely over units in the population (i.e., the weights
are informative). Since there is a trade-off between efficiency (model-based has better efficiency)
and bias (design-based is unbiased), both model and design based results are reported.

To determine whether the design may influence the results, one can examine the variability of
the weights, the effective sample size, and the design effect. For example, if the schools had the
same probability of being selected and every school selected responds, then the weights for the
schools would all be equal. When weights are all the same, their variance equals 0 and they could
be simply set to 1. With equal weights, the design would be simple random sampling. The same is
true for students. If each student has the same probably of selection and each student responds, then
the variance of the weights would be 0. For the PIRLS data, the mean and standard deviation of the
weights for schools equal 305.42 and 218.64, respectively, which suggest the school weights are
informative. For the students, the means of the Level 1 weights of students within schools mostly
equal 1, and for 74% of the schools, the standard deviations equal 0. The standard deviations for the
other 26% of the schools are less than 0.13 and most (i.e., 21%) are less than 0.05. The relatively
large value of the standard deviation of the school weights suggests that the school weights will have
an impact on the results; however, the small standard deviations for the student weights suggests
these will have a negligible impact on the results.

Another way to assess the potential impact of weights is to examine the effective sample sizes.
The effective sample sizes for the Level 2 (primary) and Level 1 (secondary) units are defined as

Neffective =
(∑ j w2| j)2

∑ j(w2
2| j)

and neffective, j =
(∑i ∑ℓ w1|i jℓ)2

∑i ∑ℓ(w2
1|i jℓ)

, (1.3)

respectively (Heeringa et al., 2010; Snijders and Bosker, 2012). These formulas define an effective
sample size such that the information in a weighted sample equals the effective sample size from
simple random sampling Snijders and Bosker (2012). If the weights are all equal, then the effective
sample sizes would equal the actual sample size. If the weights are informative, then the effective
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sample size will be less than the actual sample size. For the PIRLS data, the effective sample size
for the schools is only 120, which is considerably less than the number of schools (i.e., M = 182).
The effective sample sizes for students within schools mostly equal n j, the number of students from
school j.

A third measure of impact of the sampling design is based on the effective sample size. The
design effects for Level 2 and Level 1 are defined as the ratios of the effective sample size over the
actual sample size,

Design = Neffective/M and Design j = neffective, j/n j, (1.4)

where M equals the number of clusters (Snijders and Bosker, 2012). If weights are non-informative,
then effective sample size equals the actual sample size and the ratio of the effective over the actual
sample size equals 1. For the PIRLS data, the Level 2 design effect only equals 0.66; however, the
Level 1 design effects are all mostly equal to one (i.e., Design j = 1). In the analysis of our data, the
Level 1 weights will have a negligible effect on the results, but the Level 2 weights will likely have
a noticeable impact.

The last issue related to weights is how to scale them. In the context of multilevel models, two
major suggestions are given for scaling of the weights (Pfeffermann et al., 1998): sums of weights
equals effective sample size or sum of weights equals sample size. In the example analyses using
the PIRLS data, we use the more common approach and scale weights such that their sums equal
the sample sizes (i.e., ∑ j w2| j = 182 and ∑i ∑ℓ w1|i jℓ = n j).

The weights are incorporated when estimating a model’s parameters. How weights are incorpo-
rated is described in detail in Section 1.2.3 for binary logistic regression model and is subsequently
modified for the nominal and ordinal models in Sections 1.3 and 1.4. The capability to include
weights for the models discussed in this chapter has not been implemented in many of the common
programs. For the examples presented in this chapter, SAS (version 9.3) was used to fit all models
to the PIRLS data and Mplus (Muthén and Muthén, 1998-2010) was also used for the models that
Mplus is capable of fitting to data (i.e., random effects binary logistic regression and proportional
odds models). Software options are discussed in more detail in Section 1.5.

1.1.3 Missing Data

A vexing problem for large, complex surveys (and longitudinal data) is missing data. Dealing with
missing data is particularly difficult when data are clustered. If students or schools with missing
data on the variables listed in Table 1.1.1 were excluded, there would only be M = 158 schools and a
total of 3,994 students. Simply removing students or whole schools due to missing data is not only
a waste of data, but also can result in biased parameter estimates (Allison, 2002; Schafer, 1997;
Van Buuren, 2011, 2012; Enders, 2010). The program Mplus can fit models using maximum likeli-
hood estimation with missing values on the response variable, but cannot handle missing predictors.
Multiple imputation is an alternative approach to impute missing response and predictor variables.

A few procedures have been developed for multiply imputing missing clustered data. Chapter ??
of this book deals with missing data in multilevel models; however, this only pertains to normally
distributed variables (Shin and Raudenbush, 2007, 2010). Another proposal for multilevel data that
is described by Van Buuren (2011) (see also Van Buuren, 2012) only deals with simple cases with-
out missing Level 2 variables. Neither of these two solutions work for our data. Yet another proposal
have been put forth that includes dummy variables for each cluster (Reiter et al., 2006); however,
this presupposes that clusters only differ in terms of their intercepts. In our example, we do not want
to make this assumption and using dummy variables is impractical due to the large number of clus-
ters; therefore, this method is not pursued here. Nearly non-existent are proposals for incorporating
sampling weights into the imputation model for missing data. The one exception is Amer (2009),
but this only deals with two clusters.

Ignoring the nested structure of the data when multiply imputing missing values can lead to
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Table 1.3: Missing data on student questionnaire.

Pattern Girl Schnet TimeRdg ScreenTime Frequency Percent
1 X X X X 4715 91.95
2 X X X . 219 4.27
3 X . X X 69 1.35
4 X . X . 51 0.99
5 X X . X 48 0.94
6 X X . . 7 0.14
7 X . . X 12 0.23
8 X . . . 4 0.08
9 . X X X 3 0.06

Frequency 3 136 71 281 5128
Percent 0.06 2.6548 1.38 5.48

severely biased results (Reiter et al., 2006; Van Buuren, 2011, 2012); therefore, we took a practi-
cal approach. Since the PIRLS data are clustered, the imputations were carried out separately by
imputing school level missing values (i.e., one analysis on the 182 schools) and imputing missing
values for student level. The latter was done by carrying out 182 analyses, one for each school.
Although this method is not optimally efficient (leading to perhaps overly conservative inference),
this approach retains associations among school (Level 2) variables, and preserves the heterogeneity
between schools (i.e., random differences between schools in terms of intercept and the effects of
variables). Furthermore, since the Level 1 weights are non-informative, these have minimal impact
on the quality of the Level 1 imputed data.

For the PIRLS data, a reasonable assumption is that the data are missing at random, and we
included additional variables in the imputation model to increase the likelihood of meeting this
assumption. The patterns of missing data in the current study for the student variables are given in
Table 1.1.3 and those for the school variables are given in Table 1.1.3. Each row represents a pattern
of missing data where an “X” indicates that the column variable is not missing and a “.” indicates that
the variable is missing. The last two columns give the frequency and percent that the row patterns
occur, and the last two rows give the frequency and percent of missing values for each variable.
The percent of students that have no missing data is fairly high (i.e., 92%), and the percentages of
missing values for each variable are relatively small (i.e., less than 5.5%). In Table 1.1.3, two school
level variables that comprise StdComp are given (i.e., Num4th, the number of fourth grade students,
and SchComp, the number of computers available to fourth grade students). From Table 1.1.3, we
find that 84% of the schools’ data are completely observed and most school level variables have less
than 5% missing values. The one exception is SchComp that has 7.7% of the values missing.

Fully conditionally specified models implemented in SAS (versions 9.3) were used to impute
missing school and student level variables (Van Buuren, 2011, 2012). Fifteen imputed data sets
were created. The relative efficiency was examined for each imputed variable to determine whether
fifteen data sets were sufficient. The relative efficiency measures the multiple imputed standard error
relative to it’s theoretical minimum value, more specifically it equals(

1− Fraction of missing information
Number of imputered data sets

)−1

(Enders, 2010). The imputation models included additional auxiliary variables from the student and
school questionnaires and imputations were done at the scale level (rather than at the item level).
For the school questionnaire data, 9 variables were used in the imputation model, 4 of which were
auxiliary variables. The relative efficiencies were all larger than .99. For the student level data, the
imputation model was kept relatively simple (i.e., only 4 variables, one of which was an auxiliary
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Table 1.4: Missing data on school questionnaire.

Group Lunch Location Num4th Short Schcomp Frequency Percent
1 X X X X X 152 83.52
2 X X X X . 11 6.04
3 X X X . X 6 3.30
4 X X X . . 2 1.10
5 X X . X X 6 3.30
6 X X . . . 1 0.55
7 X . X X X 2 1.10
8 . X X X X 2 1.10

Frequency 2 2 7 9 14 182
Percent 1.10 1.10 3.85 4.95 7.69

variable) due to small sample sizes in some schools. When imputing the student level data, only 2
of the 182 schools were problematic and these had small sample numbers of students. The three
students from these two schools (1 from one school and 2 from the other) were dropped. The mean
relative efficiencies for the within school imputations were all greater than .99. The final number of
students in the data set equaled 5,128.

After the data were imputed, the school and student data sets were combined, composite and
dummy variables that are used in the analyses were created, and the design weights were computed
and scaled.

1.2 Dichotomous Response Variables

When a response variable is dichotomous, natural and common choices to model the responses are
logistic and probit regression models, and when respondents are nested or clustered within larger
units, multilevel random effects versions of these models. In this chapter we focus on the multilevel
logistic regression model.

In Section 1.2.1, the multilevel random effects logistic regression model is presented as a sta-
tistical model for clustered data, and in Section 1.2.2, the model is presented in terms of a latent
variable, including random utility formulation. In Section 1.2.3, estimation that incorporates design
weights is discussed. In Section 1.2.4, an analysis of the PIRLS data is presented to illustrate the
model.

1.2.1 Multilevel Binary Logistic Regression

A single level logistic regression model can be generalized to a multilevel model by allowing the
regression coefficients to differ randomly over clusters. Let the response variable for individual i in
group j be coded as Yi j = 1 for responses in a target category and Yi j = 0 for responses in the other
category. The distribution of Yi j is assumed to be Bernoulli (or Binomial if data are tabulated). A
cluster-specific or Level 1 logistic regression model for the probability that individual i in cluster j
has a response in the target category (i.e., P(Yi j = 1)) is

P(Yi j = 1) =
exp(β0 j + β1 jx1i j + . . .+ βP jxPi j)

1 + exp(β0 j + β1 jx1i j + . . .+ βP jxPi j)
, (1.5)

where xpi j is the value of the pth Level 1 predictor variable for individual i in cluster j, β0 j is
the intercept for cluster j, and βp j is the regression coefficient for xpi j in cluster j. Note that for
P(Yi j = 0), the βp j’s in the numerator all equal zero. The term in the denominator ensures that
P(Yi j = 1) + P(Yi j = 0) = 1.
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The between cluster or Level 2 models are the same as those in the multilevel models for normal
response variables discussed in Chapter ?? (i.e., hierarchical linear models or HLMs). Suppose that
there are Q possible between cluster predictors, z1 j, . . . , zQ j. The Level 2 models are linear models
for each Level 1 regression coefficient:

β0 j =
Q

∑
q=0

γ0qzq j +U0 j

β1 j =
Q

∑
q=0

γ1qzq j +U1 j (1.6)

...

βP j =
Q

∑
q=0

γPqzq j +UP j,

where z0 j = 1 for an intercept. The zq js are predictors or explanatory variables that model systematic
differences between clusters, the γpqs are fixed regression coefficients for the zq js, and the Up js are
the cluster-specific random effects. The first subscript on γpq corresponds to the effect in the Level
1 model and the second subscript corresponds to the predictor in the Level 2 model. For example,
γpq is the regression coefficient for zq j in the model for βp j.

The predictors in the models for the βp js (i.e., the zq js) need not be the same over the models
in (1.6). For example, in the PIRLS data, shortages of supplies may predict differences between
schools’ intercepts, but not predict the differences between schools in terms of the effect of the
amount of time that a student spends using electronics (i.e., ScreenTime).

The unexplained, random or stochastic differences between clusters are modeled by the random
effects. The distributional assumption for the Up js is

UUU j =


U0 j
U1 j

...
UP j

∼ MV N




0
0
...
0

 ,


τ00 τ10 . . . τP0
τ10 τ11 . . . τP1
...

...
. . .

...
τP0 τP1 . . . τPP


 i.i.d., (1.7)

where MV N stands for multivariate normal and i.i.d stands for independent and identically dis-
tributed. For short, assumption 1.7 can be written as UUU j ∼ MV N(000,TTT ) i.i.d..

Substituting the Level 2 models into the regression coefficients of the Level 1 model yields our
combined or cluster-specific model for the probabilities,

P(Yi j = 1|xxxi j,zzz j,UUU j) =
exp(∑P

p=0(∑Q
q=0 γpqzq j +Up j)xpi j)

1 + exp(∑P
p=0(∑Q

q=0 γpqzq j +Up j)xpi j)
, (1.8)

where x0i j = z0 j = 1 for the intercept. To emphasize that these are conditional models for probabilities
that depend on the observed and unobserved variables, the conditioning is explicitly indicated here
where xxxi j consists of within cluster predictors, zzz j the observed between cluster predictors, and UUU j
the unobserved between cluster random effects.

Similar to single level logistic regression models, exp(γpq) equals an odds ratio. More specifi-
cally, based on the model for probabilities in (1.8), the odds that Yi j = 1 versus Yi j = 0 equals

P(Yi j = 1|xxxi j,zzz j,UUU j)
P(Yi j = 0|xxxi j,zzz j,UUU j)

= exp

[
P

∑
p=0

(
Q

∑
q=0

γpqzq j +Up j)xpi j

]
. (1.9)

To illustrate the interpretation of the γpqs, consider a model with two Level 1 (within cluster) pre-
dictors, x1i j and x2i j, one Level 2 (between group) predictor z1 j of the intercept and the slope of x2i j,
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and a random intercept U0 j. The odds for this model are

P(Yi j = 1|x1i j,x2i j,z1 j,U0 j)
P(Yi j = 0|x1i j,x2i j,z1 j,U0 j)

= exp(γ00 + γ01z1i j + γ10x1i j + γ20x2i j + +γ21z1 jx2i j +U0 j). (1.10)

To interpret the parameter of a “main effect”, for example the effect of x1i j, holding all other vari-
ables constant, the odds that Yi j = 1 for a one unit increase in x1i j is exp(γ10) times the odds for x1i j;
that is, the odds ratio equals exp(γ10). If γ10 > 0 then the odds increase, if γ10 < 0 then the odds de-
crease, and if γ10 = 0 then the odds do not change (i.e., the odds are equal). This interpretation of the
effect of x1i j requires that the values of all other variables be constant; however, it does not depend
on the particular values of the other predictor variables or the particular value of x1i j. To interpret a
(cross-level) interaction when the focus is on the effect of x2i j on Yi j, we would consider the odds
for a one unit increase in x2i j. This odds ratio is exp(γ20 + γ21z1 j) and it depends on the value of z1 j.
In reporting and explaining the effect of an interaction, representative values of z1 j could be used
(e.g., 25th, 50th and 75th percentiles). Alternatively, when the focus is on the effect of z1 j on Yi j,
we could report and explain the odds ratio for a one unit increase in zi j, which is exp(γ01 + γ21x2i j).

The interpretation of γpq is always qualified by “all other variables constant”, including the ran-
dom effects U0 j and other observed predictors. As a result the interpretation is cluster-specific or
within clusters because the random school effect U0 j has to be held constant. This is different from
the interpretation of γpqs in HLM. The γpqs in HLM are interpretable as cluster-specific and as
marginal or population average effects. This difference stems from the fact that marginal distribu-
tions of multivariate normal random variables (as we have in HLM) are normally distributed. This
is not true for a multilevel random effects logistic regression model or any of the models covered
in this chapter. When one collapses over the unobserved random effects of the cluster-specific lo-
gistic regression model to get the marginal distribution, the result is not a logistic regression model
(Demidenko, 2004; Raudenbush and Bryk, 2002; Snijders and Bosker, 2012). The marginal effects
in multilevel random effects logistic regression are smaller than the cluster specific ones.

1.2.2 A Latent Variable Approach

An alternative approach to random effects models for dichotomous responses (and later multicate-
gory responses) is to propose a latent continuous variable that underlies the observed data (Muthén,
1998–2004; Skrondal and Rabe-Hesketh, 2000). This approach can also be framed as a random
utility model or a discrete choice model (McFadden, 1974). The former hypothesizes that observed
data are related to the latent variable Y ∗

i j as follows:

Yi j =
{

1 if Y ∗
i j > 0

0 if Y ∗
i j ≤ 0 , (1.11)

where 0 is the threshold. A linear random effects model is then proposed for the latent variable Y ∗
i j ,

Y ∗
i j =

P

∑
p=0

(
Q

∑
q=0

γpqzpqk +Up j

)
xpi j + εi j, (1.12)

where z00k = x0i j = 1 (for intercepts), γpq are the fixed effects parameters, Up j are the random effects
for clusters, and εi j is a random residual for individual i within cluster j. This linear model can also
be arrived at using a multilevel perspective as was done in the previous section.

The distribution assumed for εi j determines the model for data. If εi j ∼ N(0,σ2), the model
for Yi j is a probit model, and if εi j follows a logistic distribution, the model for Yi j is a logistic
regression2

2In the random utility or choice model formulation, a linear model is given for the latent variable (utility) for each
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Instead of 0 as the cut-off or threshold relating the observed and latent variables in (1.11), some
authors and programs (e.g., Muthén & Muthén in Mplus) estimate a non-zero threshold, say ξ . This
is equivalent to using a 0 cutoff by noting that for Yi j = 1,

Y ∗
i j = γ00 +

Q

∑
q=1

γ0qz0qk +U0 j +
P

∑
p=1

(
Q

∑
q=0

γpqzpqk +Up j)xpi j + εi j > 0,

which is equivalent to
Q

∑
q=1

γ0qz0qk +U0 j +
P

∑
p=1

(
Q

∑
q=0

γpqzpqk +Up j)xpi j + εi j >−γ00.

The cut-off or threshold is ξ = −γ00.
The latent variable approach facilitates the extension of the model to multi-category data. In

the case of ordered response variables, assuming the existence of a latent variable is especially
appealing because there may be some underlying continuum that gives rise to ordered observed
responses. Many psychometric models are based on just such an assumption (e.g., random utility
models, discrete choice models, Guttman scale, item response theory models, and others).

Similar to HLM for normal response variables, an intra-class correlation (ICC) can be computed
for random intercept models. In the case of a random intercept logistic regression model with no
predictors (i.e., the only random effect in the model is U0 j), the ICC equals

ICC =
τ00

τ00 + π2/3
.

The ICC is a measure of within cluster homogeneity and equals the proportion of variance due
to between cluster differences. A residual ICC, computed when there are fixed effect predictors
and a random intercept, measures within cluster homogeneity and variance due to between cluster
differences given the predictors.

1.2.3 Estimation

Typically, maximum likelihood estimation (MLE) is used to estimate single level and multilevel
random effects logistic regression model parameters; however, with weights, the method used is a
version of pseudolikelihood estimation. Following the general approach of Pfeffermann et al. (1998)
(see also, Grilli and Pratesi, 2004; Asparouhov and Muthén, 2006; Rabe-Hesketh and Skronkal,
2006), the weights are incorporated into the likelihood equations and the parameters are found by
maximizing the modified equations or pseudolikelihood equations. The basic procedure described
below is also used for other models covered in this chapter with slight variations (i.e., the distribution
of cluster-specific response and the model for probabilities). Given the multilevel structure, first we
show how the Level 1 weights are included to yield cluster-specific pseudolikelihood equations and
then show how the Level 2 weights are incorporated.

Let L(yi j|xxxi j,zzz j,UUU j) equal the logarithm of the likelihood conditional on the observed predictor
variables and random effects UUU j for individual i in cluster j. To incorporate the Level 1 weights
w1|i j, each of the likelihoods for individuals within a cluster are weighted by their values of w1|i j
and then the random effects are collapsed over to yield the cluster-specific log-pseudolikelihood
L(yyy j) as follows:

L(yyy j) = log

[∫
UUU

exp

{
n j

∑
i=1

w1|i jL(yi j|xxxi j,zzz j,UUU j)

}
f (UUU j)dUUU j

]
, (1.13)

category (i.e., Y∗
i jk for category k where k = 0, . . . ,K), and the category with the largest value of the latent variable/utililty is

selected. For identification, the random and fixed effects for the utility associated with the reference category (i.e., Y∗
i j0 = 0)

equal zero; therefore, Y∗
i j in (1.11) represents the difference between utilities. The distribution of the difference between εi js

determines the choice option selected. When the residuals in the model for Y∗
i jk are assumed to follow a Gumbel (extreme

value) distribution, the difference between the εi js follows a logistic distribution leading to the logistic regression model.
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where integration is over all random effects in UUU j, and f (UUU j) is the multivariate normal distribution
with mean 000 and covariance matrix TTT (Asparouhov and Muthén, 2006; Rabe-Hesketh and Skronkal,
2006; Grilli and Pratesi, 2004). In (1.13), the unobserved predictors are integrated out to yield
cluster-specific log-pseudolikelihoods. For logistic regression, the individual likelihood equals the
Bernouli distribution function and L(yi j|xxxi j,zzz j,UUU j) is

L(yi j|xxxi j,zzz j,UUU j) = log
{

P(Yi j = 1|xxxi j,zzz j,UUU j)yi j (1−P(Yi j = 1|xxxi j,zzz j,UUU j))(1−yi j)
}
,

where P(Yi j = 1|xxxi j,zzz j,UUU j) is given by (1.8), and yi j is an indicator variable that equals 1 if the
response by individual i in cluster j is the target category and 0 otherwise.

The group specific log-pseudolikelihoods in (1.13) must be combined to yield the log-
pseudolikelihood using all the data. The Level 2 weights enter at this point. Assuming independence
between clusters, the log-pseudolikelihood for all the responses equals

L(yyy) =
M

∑
j=1

w2| jL(yyy j). (1.14)

(Grilli and Pratesi, 2004; Asparouhov and Muthén, 2006; Rabe-Hesketh and Skronkal, 2006). The
parameters (i.e., γpq and τpp′ for all p, p′ and q) that maximize (1.14) are the maximum pseudo-
likelihood estimates. Although, the log-pseudolikelihood equations have only been given here for a
two level models, Rabe-Hesketh and Skronkal (2006) give a general set of formulas for higher-level
models and illustrate their use for a 3–level model fit to PISA data.

A number of estimation algorithms exists that attempt to find the parameters that maximize ei-
ther the log-likelihood (i.e., w2| j = w1|i j = 1) or the log-pseudolikelihood. Two algorithms, marginal
quasi-likelihood and penalized quasi-likelihood, attempt to approximate the model by linearizing
the model using a Taylor series expansion and then using an algorithm designed for a linear mixed
model (SAS Institue Inc, 2011b). Unfortunately, these two strategies yield parameters estimates
that are severely biased. A better approach is to find the parameters that maximize the function in
(1.14). The “gold standard” is adaptive Gaussian quadrature (i.e., numerical integration); however,
this becomes computationally very difficult and time consuming for multiple (correlated) random
effects. A third alternative is Bayesian methods. For the examples presented in this chapter, adaptive
quadrature is used to estimate model parameters.

When MLE is used to obtain parameter estimates, the standard errors of parameters can be esti-
mated based on the model and are valid provided that the correct model is specified. Under pseudo-
likelihood estimation, the model based standard errors will be biased; therefore, robust (sandwich
or empirical) estimators of the standard errors are recommended. The sandwich estimates are based
on the data3. The robust standard errors can be used to compute test statistics for the fixed effects,
in particular, the test statistic equals γ̂pq/ŝe where γ̂pq is the pseudolikelihood estimate of γpq and ŝe
is the sandwich estimate.

1.2.4 Example for Binary Response Variable

In this example, we model how much time a student spends looking up information for school on
the Internet where the response variable was coded Yi j = 1 for at least once a week and Yi j = 0 for
at most twice a month. The predictor variables that were considered are given in Table 1.1.1. Each
model was fit to each of the 15 imputed data sets and the results combined using Rubin’s method
(Rubin, 1987), which is given in Chapter ?? of this book. As a measure of the impact of missing
data on the analysis, the missing fraction of information for estimating a parameter was computed.
This measures how much information about a parameter is lost due to missingness (Snijders and

3The sandwich estimators are also used in MLE with a misspecified model.
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Bosker, 2012). This fraction equals

Missing Fraction =
(1 + 1/15)var(γ̂pq)

v̂ar(γ̂pq) + (1 + 1/15)var(γ̂pq)
, (1.15)

where v̂ar(γ̂pq) is the estimated sandwich variance from combining over imputations and var(γ̂pq)
is the variance of the parameters over the 15 imputed data sets. Small values indicate little loss of
information.

The models were fit using both Mplus (version 6) and SAS PROC NLMIXED (verison 9.3) and
empirical (sandwich) standard errors were computed by each program. We started with a relatively
simple random intercept model with few fixed effects and increased the complexity by adding more
fixed effects at Level 1 and Level 2, including cross-level interactions. Some of the Level 1 predictor
variables showed a fair amount of variability between schools; therefore, Level 1 variables were
centered around their school means and the means used as predictors of the intercept. The first such
model had school-mean centered ScreenTime (i.e., ScreenTimei j − ScreenTime j) and school-
mean centered TimeRdg (i.e., TimeRdgi j − TimeRdg j) as within or Level 1 predictors, and the
means ScreenTime j and TimeRdg j were entered into the model as predictors of school intercepts.
Once a relatively complex fixed effects model was successfully fit to the data, fixed effects that
were non-significant were successively dropped; however, at some steps some school effects were
put back in the model and re-tested. After arriving at a fixed effects structure that seemed to be best,
we fit three more models each of which had a random slope for each of the Level 1 variables. The
final model chosen was

Level 1: log
(

P(Yi j = 1)
P(Yi j = 0)

)
= β0 j + β1 jGirli j + β2 jScreenTimei j + β3i j(TimeRdgi j −TimeRdg j),

(1.16)
and

Level 2: β0 j = γ00 + γ01TimeRdg j + γ02Shortages j

+γ03AllFree j +U0 j

β1 j = γ10

β2 j = γ20

β3 j = γ30,

where U0 j ∼ N(0,τ00). Although we arrived at this model including weights, we report estimated
parameters, standard errors, and various statistics in Table 1.5 for this model with and without
weights. Models were also fit to data using only Level 2 weights, and these yielded essentially
identical results as those using both Level 1 and Level 2 weights. Only the results with both weights
included are reported. This is true here and in later sections. Note that the missing fractions are for
the most part small indicating that missing data had a small impact of the results. There are some
differences between the results depending on whether weights are used or not. In particular, note
that the standard errors are larger when weights are used and the effect of Girl is significant at the
.05 level when weights are not used but is not significant when weights are used in the estimation.

Before settling on this model and interpreting the parameters, we also preformed some model
diagnostics. The U js were estimated after the model was fit to the data using empirical Bayes esti-
mation. One of the assumptions of the multilevel model was that the Up js are normal. The estimated
U0 js were plotted and found to be roughly normal, which is consistent with the normality assump-
tion but is not conclusive. The normality of estimated U0 j only reveals if the assumption is tenable,
the assumption may still be violated (Verbeke and Molenberghs, 2000).

We adapted a method, receiver operating characteristic (ROC)4 curve analysis, used in single

4ROC analysis was originally used in signal detection analyses where decisions are made under uncertainty, such as
whether a blip on a radar is a signal or noise.
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Figure 1.1 ROC curves for unconditional (i.e., U0 j = 0) and conditional predictions (i.e., Û0 j) based on the final
logistic regression model from pseudolikelihood estimation. The numbers are the cut-points used to determine
predicted responses from predicted probabilities.

level logistic regression (Agresti, 2002) to multilevel logistic regression. This analysis gives us a
sense of how much is gained from the model and a way to compare models. After a model was
fit to data, predicted probabilities setting U j = 0 (i.e., “uncondtional probabilities”) were computed
and probabilities conditional on the schools (i.e., using estimates of U0 js) were also computed.
Predicted responses were determined using multiple cut-points from 0 to 1 incremented by .025.
The probabilities of true positives (i.e., P(Ŷi j = 1|yi j = 1) ) and false positives (i.e., Ŷi j = 1|yi j = 0))
were plotted against each other (one point for each cut-point). As an example, the ROC curves for
the final model are plotted in Figure 1.1 with the cut-points indicated. The ROC curves for different
imputations were nearly indistinguishable so what is plotted in Figure 1.1 is the average of the 15
curves. Chance (random prediction) is indicated by the straight line. The further a model’s ROC
curve is above the straight line, the better the fit of the model to data. The area under the ROC
curves equals the concordance index. Note that conditioning on the schools yields better predictions
than not conditioning on the schools, which is evidence for the importance of a random effect for
the intercept.

Likelihood ratio tests and information criteria can be used to compare models estimated by
maximum likelihood (i.e., w2| j = w1|i j = 1). Under MLE, the hypothesis for random effects (e.g.,
H0 : τ00 = 0 for a random intercept model) is a non-standard test because the conditions for standard
test statistics fail (e.g., τ00 = 0 is on the boundary of the parameter space). However, variances can
be tested by computing a likelihood ratio test statistic but compare it to a mixture of chi-square
distributions (for more details see Chapter ?? or Verbeke and Molenberghs, 2000; Molenberghs
and Verbeke, 2005; Self and Liang, 1987; Stram and Lee, 1994). Under pseudolikelihood, simple
likelihood ratio tests of fixed effects and information criteria for model comparisons should not be
used. A correction does exist for likelihood ratio tests (Asparouhov and Muthén, 2006); however,
it requires extra computations to obtain the correction factor. The corrected likelihood ratio test is
implemented in Mplus and was studied by Asparouhov and Muthén (2006). They found the adjusted
likelihood ratio test to be superior to uncorrected one in terms of rejection rates. It should be noted
that the corrected test’s performance depends on cluster sample size (i.e., larger cluster sizes lead to
better results).
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Based on the pseudolikelihood parameter estimates, holding all other variables constant (includ-
ing the random effect), the odds that a girl will use the internet for school at least weekly are 1.14
time that for boys. In other words, within a given school, girls are more likely than boys to use the
Internet to look up information for school. Additionally, students who spend more time in front of a
screen (watching TV, DVDs, playing computer or video games) are more likely to use the Internet,
and students who spend more time reading for school relative to their classmates are more likely to
use the Internet for school.

Student’s use of the Internet for school work depends on the school to which they attend. First
note that the residual ICC for the final model equals (.262/(0.262 + π2/3) =) .07. For the sake of
comparison when only the Level 1 variables are in the model, τ̂00 = 0.335 (ŝe = 0.068) and the ICC =
0.335/(0.335 + π2/3) = .09. The between level variables accounted for (.335− .262)/.335×100 =
21% of variance of the intercept (differences between schools). Holding observed and unobserved
variables constant, the odds ratio that a student will use the Internet for school for a one unit increase
in school-mean time spent reading equals 3.04; that is, higher values of TimeRdg j are associated
with larger odds of Internet use. Greater shortages in a school are associated with decreased odds
of Internet use; however, larger odds are associated with schools where all students have free or
reduced priced lunch.

1.3 Nominal Response Variables

The binary logistic regression model is a special case of the baseline multinomial logistic regres-
sion model. After presenting the multinomial model, estimation is briefly discussed followed by an
example using the PIRLS data.

1.3.1 The Baseline Multinomial Model

Let k index the K response options such that Yi j = k for k = 1, . . . ,K. The Level 1 or cluster-specific
model is

P(Yi j = k) =
exp(β0 jk + ∑P

p=1 βp jkxpi j)

∑K
k=1 exp(β0 jk + ∑P

p=1 βpkxp jk)
. (1.17)

The sum in the denominator ensures that the sum of the probabilities over response options equals
one. Note that there is a different intercept and slope for each response option5. This model can
become very complex rather quickly. Typically, one response option is chosen as a baseline and
the parameters for this response option are set equal to zero. There may be a natural baseline (e.g.,
“none”) or an arbitrary response option can be used as the baseline. We use K here as the baseline
or reference category and the βp jKs are set equal to 0.

The Level 2 model is just like the Level 2 model for the binary logistic model and other types
of multilevel random effects models, except that there is now a Level 2 model for each Level 1 pre-
dictor and each (K-1) response options. The regression coefficients are assumed to be (multivariate)
normal; that is,

β0 jk =
Q

∑
q=0

γ0qkzq j +U0 jk (1.18)

...

βP jk =
Q

∑
q=0

γPqkzq j +UP jk, (1.19)

5This model can be re-parameterized as a conditional multinomial logistic regression model such that the predictors can
be attributes of response options, as well as of individuals (i.e., xpi jk). In the conditional model, there is a single β j for each
school and for each response variable xi jk , but there are many more response variables (Agresti, 2002, 2007; Anderson and
Rutkowski, 2008).
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for k = 1, . . . , (K − 1). The random terms may depend on the response categories as well as the
cluster.

The most natural interpretation of the fixed effects parameters is in terms of odds ratios. Given
that response K was chosen as the reference category, the cluster-specific model is

log
(

P(Yi j = k)
P(Yi j = K)

)
= exp

(
P

∑
p=0

(
Q

∑
q=0

γpqkzq j +Up jk)xpi j

)
. (1.20)

The interpretation of main effect and interaction effects are the same as those for the binary logistic
regression model; that is, exponentials of γpqs are estimates of odds ratios.

There are a number of ways to simplify the model. One way is to assume that the random effects
do not depend on the category, in which case the k subscript will be dropped (e.g., Up j). Another
way to simplify the model is to set some fixed effects to be equal for different response categories
(e.g., γpqk = γpqk′ where k ̸= k′). These simplifications are illustrated in Section 1.3.3.

1.3.2 Estimation

Estimation of the multinomial model with weights is basically the same as it was for the binary lo-
gistic regression model, except that the binomial distribution is replaced by the more general multi-
nomial distribution and the cluster-specific multilevel nominal logistic regression model replaces
the multilevel logistic regression model. With these changes, the cluster-specific log-likelihood is

L(yi jk|xxxi j,zzz j,UUU jk) = log
[
P(Yi j = 1|xxxi j,zzz j,UUU jk)yi j1 P(Yi j = 2|xxxi j,zzz j,UUU jk)yi j2

. . .P(Yi j = K|xxxi j,zzz j,UUU jk)yi jK
]
, (1.21)

where yi jk is an indicator of the observed response coded such that yi jk = 1 if the response from
individual i in cluster j is k, and zero otherwise. The cluster-specific multinomial logistic regression
model is

P(Yi j = k|xxxi j,zzz j,UUU jk) =
exp
(

∑P
p=0

(
∑Q

q=0 γpqkzq j +Up jk

)
xpi j

)
∑K

k=1

(
exp
(

∑P
p=0

(
∑Q

q=0 γpqkzq j +Up jk

)
xpi j

)) . (1.22)

The cluster-specific log pseudolikelihoods are combined as in (1.14) to yield a log pseudolikelihood
for the entire data set.

1.3.3 Multinomial Example

The parameters of models reported in this section were fit using SAS/NLMIXED (version 9.3) using
the EMPIRICAL option to compute the sandwich standard errors. The sandwich standard errors were
used in the statistical tests for the fixed effects. In the models, the baseline or reference category was
“None or almost never”.

Our modeling process started with fitting models with one fixed effect predictor, various combi-
nations of fixed effects, and a simple random structure (i.e., only a single random intercept for each
school, U0 jk = U0 j for all k = 1, . . . ,4). Predictors that were consistently significant were retained
in the model. The fixed effects structure settled on is similar to that in the binary model example,
except that free lunch was not significant. The results of this random intercept model with complex
fixed effects estimated with and without weights are reported in Table 1.6.
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Possible simplifications of the model are suggested by examining the parameters reported in
Table 1.6. For example, the parameter estimates for Girl are similar in value for the first three re-
sponse options, and only the parameters for the first response option for ScreenTime is significant.
Parameters that are similar in value can be equated and those that are not significant can be set to
0 (i.e., equated to the value for the baseline category). Significance tests can be computed for these
restrictions using Wald tests. We can test whether the coefficients for effects are all the same, such
as those for Girl, H0 : γ11 = γ12 = γ13. Let P∗ equal the number of fixed effects parameters and LLL
equal an (r×P∗) matrix whose rows define linear combinations of the P∗ parameters, γγγ is a (P∗×1)
vector of parameters, and SSSγ̂ the covariance matrix of parameter estimates. The null hypothesis for
Girls is

H0 : LLLγγγ =
(

0 0 0 0 1 −1 0 . . . 0
0 0 0 0 1 0 −1 . . . 0

)


γ00
γ01
γ02
γ03
γ11
γ12
γ13

...
γP3


=
(

γ11 − γ12
γ11 − γ13

)
=
(

0
0

)
.

and
Wald = γγγ ′LLL′(LLLSSSγ̂γγ LLL′)−1LLLγγγ ∼ χ2

r .

For the above hypothesis and using the sandwich covariance matrix for SSSγ̂ , Wald = 1.34 with degrees
of freedom r = 2 and p = .51, which supports the conclusion that a single coefficient for Girl is
sufficient. Testing whether the coefficients for CTimeRdg are the same yields Wald = 13.98, d f = 2
and p < .01 and indicates that these should not be equated. Note that when testing a single fixed
effect, such as Ho : γpq = 0, the test statistic reduces to (γ̂pq/ŝeγpq)2.

Based on a number of Wald tests, in the next round of modeling, some parameters were equated
and others were set equal to 0. Given a simpler fixed effects structure, the random structure of the
model was developed. Category-specific random effects were first added to the model that only had
an intercept. The variances of U0 j1 and U0 j2 were similar in value and the estimated correlation
between them equaled .79. This suggested setting U0 j1 = U0 j2 and implies that the random effect for
a school is the same when the response is either “Every day or almost every day” and “Once or twice
a week”. With this restriction, the model with both the fixed effects structure found previously and
a semi-complex random structure was fit to the data and selected as our final model. The parameter
estimates and various statistics for the final model are reported in Table 1.7. The models fit by MLE
reported in Tables 1.6 and 1.7 can be compared using AIC and BIC. The model in Table 1.7 fit by
MLE with the more complex random structure is better in terms of AIC and BIC than they are in
Table 1.6.
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Even after simplifying the model, there are still a large number of fixed effects parameters. To
aid interpretation and in some circumstances. it may be desirable to compare all pairs of response
options. All possible odds ratios can be computed by calculating for all unique pairs of response
options. For example, suppose that we wish to look at the effect of school-mean centered read-
ing time on the odds of “Every day or almost every day” (Daily) versus “Once to twice a week”
(Weekly). Based on the pseudolikelihood estimates, this odds ratio equals exp(0.452− 0.281) =
1.19. Since there were no interactions in the final model, all the odds ratios were computed using
exp(γpqk − γpqk′) and are reported in Table 1.8. For each effect, the odds ratios below the diagonals
were computed using the pseudolikelihood estimates and those above were from MLE. An entry
in the table is the odds ratio of more frequent use of the Internet versus less frequent use for unit
change of the predictor variable. For example, the pseudolikelihood estimate of the odds ratio of
Daily use of the Internet versus Monthly for a one unit change in school-mean centered reading
time is 1.39 and the maximum likelihood estimate is 1.29.

Not all the pairwise odds ratios are necessarily significant. A test for an odds ratio can be con-
ducted or a confidence interval can be placed on the odds ratios. In general, a test statistic for
Ho : exp(γpqk) = exp(γpqk′) equals

γ̂pqk − γ̂pqk′

ŝe(γ̂pqk−γ̂pqk′ )
,

where that standard error of the difference equals

ŝe(γ̂pqk−γ̂pqk′ ) =
√

var(γ̂pqk) + var(γ̂pqk′)−2cov(γ̂pqk, γ̂pqk′),

and sandwich estimates are used for the variances and covariances. Given the large sample sizes, the
above test statistic can be compared to a standard normal distribution. In Table 1.8, the significant
odds ratios are in bold face. For a (1−α)×100% confidence interval for an odds ratio, an interval
is first computed for the γs,

(γ̂pk − γ̂pk′ )± zα/2ŝe(γ̂pk−γ̂pk′ ),

and then the exponential of the endpoints taken for the interval of the odds ratio.
The ordinal nature of the responses is apparent in Table 1.8. In general, the odds are non-

decreasing as the reported amount of time using the Internet decreases (i.e., odds ratios tend to
increase as one goes down the columns for the pseudolikelihood or across the rows for the maxi-
mum likelihood ones). The exception is for shortages j where the odds ratios are greater than 1 for
Daily versus Weekly or Monthly, but they are less than 1 for Weekly or Monthly versus Never. The
direction of the effect of shortages j is different for different pairs of response options. This illus-
trates one of the strengths of the multnomial model. The multinomial model permits a fine grained
analysis, including the possibility of reversals in the direction of effects.

1.4 Ordinal Response Variables

When response options have a natural ordering, as they do in our PIRLs data, the ordering can be
incorporated into an analysis by selecting a model that explicitly uses the ordering of the response
options. In ordinal models, the response options are dichotomized based on the ordering of the
categories, which yields (K −1) dichotomies. The major difference between ordinal models is how
responses are dichotomized and whether restrictions are placed on parameters over the dichotomies.
Three of the most common ordinal models are continuation ratios, adjacent categories and propor-
tional odds models. These are presented in Sections 1.4.1, 1.4.2 and 1.4.3. Less restrictive versions
of the adjacent categories and proportional odds models are also discussed. Throughout this section
is it assumed that categories are ordered from k = 1 to K.
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Table 1.8 All possible odds ratios from final model of more frequent versus less frequent where those below the
diagonals are estimated using pseudolikelihood (with weights) and those above the diagonal from maximum
likelihood estimation (no weights). The odds ratios in bold are significantly different from 1 and those in boxes
are adjacent categories.

Predictor Response Response Options
Variable Options Daily Weekly Monthly Never
Girl Daily 1.00 1.00 1.52

Weekly 1.00 1.00 1.52
Monthly 1.00 1.00 1.52
Never 1.47 1.47 1.47

Screen Daily 1.18 1.18 1.18
Time Weekly 1.19 1.00 1.00

Monthly 1.19 1.00 1.00
Never 1.19 1.00 1.00

Centered Daily 1.35 1.29 1.47
Time Weekly 1.19 1.14 1.29
Reading Monthly 1.39 1.17 1.14

Never 1.57 1.32 1.13
Mean Daily 1.00 1.75 3.46
Time Weekly 1.00 1.75 3.46
Reading Monthly 2.09 2.10 1.97

Never 5.11 5.12 2.44
Shortages Daily 1.20 1.20 1.00

Weekly 1.26 1.00 0.84
Monthly 1.26 1.00 0.84
Never 1.00 0.79 0.79

1.4.1 Continuation Ratios

One common and simple approach for ordinal responses is to form continuation ratios,

P(Yi j = k)
P(Yi j = k + 1) + . . .+ P(Yi j = K)

for k = 1, . . . ,K −1, (1.23)

or
P(Yi j = k + 1)

P(Yi j = 1) + . . .+ P(Yi j = k)
for k = 1, . . . ,K −1. (1.24)

With continuation ratios, multilevel binary logistic regression models are fit separately to each of
the (K −1) ratios.

For the PIRLS data, multilevel logistic regression models could be fit to each probability of
a more frequent use of the Internet versus a less frequent use; that is, multilevel binary logistic
regression models could be fit to each of the following ratios:

Ratio I P(Daily)/P(Weekly, Monthly or Never) (1.25)
Ratio II P(Weekly)/P(Monthly or Never) (1.26)

Ratio III P(Monthly)/P(Never). (1.27)

Advantages of this approach over the other ordinal models discussed in this section is that binary
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logistic regression models are much simpler to use and different models may be found for each way
of forming odds ratios. A relative disadvantage of this model is that except for one ratio (e.g., (1.25)),
the models for the other ratios (e.g., (1.26) and (1.27)) are based on a sub-set of the data and hence
smaller sample sizes.

1.4.2 Adjacent Categories

A model that compares pairs of response options is the adjacent categories logit model (Hartzel
et al., 2001). The cluster-specific (Level 1) model of the multilevel adjacent categories logit models
is

log
(

P(Yi j = k)
P(Yi j = k + 1)

)
=

P

∑
p=0

βp jkxpi j for k = 1, ...,K −1. (1.28)

It may be reasonable that the effect of predictors are the same for each pair of adjacent responses;
therefore, in the Level 2 models, the fixed effects are specified so that they do not depend on k. Only
the fixed effects for the Level 2 intercept of the Level 1 intercept are allowed to depend on k. The
Level 2 model for the intercept is

β0 jk = γ00k +
Q

∑
q=1

γ0qzq j +U0 jk for k = 1, . . .K −1. (1.29)

From (1.29), we can see that the intercept of the intercepts γ00k and the random effects U0 jk can
differ over pairs of adjacent logits, but the coefficients for the predictors of the intercept γ0q are
fixed over k.

The Level 2 models for the Level 1 predictors xpi j for p > 0 are

βp jk =
Q

∑
q=0

γpqzq j +Up jk for k = 1, . . .K −1. (1.30)

Note that the fixed effects do not depend on k, but the random effects may depend on the specific
pair of responses, k and k + 1.

To show that the fixed effects of the predictors are the same for neighboring categories, we
replace the βp jks in the Level 1 model (1.28) by their Level 2 models, (1.29) and (1.30), and obtain

log
(

P(Yi j = k)
P(Yi j = k + 1)

)
= γ00k +

P

∑
p=0

Up jk︸ ︷︷ ︸
Depends on k

+
Q

∑
q=1

γ0qzq j +
P

∑
p=1

Q

∑
q=0

γpqzq jxpi j︸ ︷︷ ︸
Does not depend on k

. (1.31)

The fixed effects for xpi j and zq j are the same for all adjacent categories. The exponentials of the
γpqs are interpretable as odds ratios just as they are in binary and multinomial logistic regression.
The restriction that the fixed effects of xpi j and zq j are the same for neighboring responses is a strong
assumption.

To estimate the adjacent categories model, we use the fact that the model is a special case of
the baseline multinomial model. For the adjacent categories model, the log of the likelihood and
the model for the P(Yi j = k|xxxi j,zzz j,UUU jk) are the same as those for the baseline multinomial model;
however, linear restrictions must be placed on the fixed effects parameters of the multinomial model.
To see the connection between these models and to find the proper restrictions on the multinomial
parameters, we first note that the baseline logits can be written as the sum of the adjacent category
logits; that is,

log
(

P(Yi j = k)
P(Yi j = K)

)
= log

(
P(Yi j = k)

P(Yi j = k + 1)

)
+ . . .+ log

(
P(Yi j = K −1)

P(Yi j = K)

)
, (1.32)
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for k = 1, . . . ,K − 1. Substituting the adjacent categories model (1.31) into (1.32) and simplifying
yields

log
(

P(Yi j = k)
P(Yi j = K)

)
=

K−1

∑
h=k

γ00h +
P

∑
p=0

(
K−1

∑
h=k

Up jh

)
xpi j + (K − k)

(
Q

∑
q=1

γ0qzq j +
P

∑
p=1

Q

∑
q=0

γpqzq jxpi j

)
.

(1.33)
Equation (1.33) is a restricted version of the multinomial logistic regression model. The correspon-
dence between parameters of the two models is as follows where the multinomial parameters have
the superscript “[mlt]” and the adjacent categories parameters have no superscript:

Multinomial Model Adjacent Categories

γ [mlt]
00k =

K−1

∑
h=k

γ00h

γ [mlt]
pqk = (K − k)γpq for p > 01

U [mlt]
p jk =

K−1

∑
h=k

Up jh.

Therefore, the adjacent categories intercept parameters equal γ00k = γ [mlt]
00k −γ [mlt]

00,k−1. The fixed effects

for predictors in the adjacent categories model equal γpq = γ [mlt]
pqk − γ [mlt]

pq,k−1; that is, the difference

γ [mlt]
pqk − γ [mlt]

pq,k−1 must be restricted to equal a constant value for a given p and q. This restriction im-
plies that the odds ratios for adjacent categories are the same regardless of which two neighboring
categories are compared (i.e., exp[(γ [mlt]

pq,k+1 − γ [mlt]
pqk )xpi j] = exp[γpqxpi j]). The odds ratios do not de-

pend on which two adjacent categories are compared, which is a property of the adjacent categories
model. It follows that if a multinomial model has been fit to data, the results can provide information
about the plausibility of an adjacent categories model, in particular, whether the effects of the xpi js
and zq js depend on the response options.

For the PIRLS example on Internet usage, we can use our results from the baseline multinomial
model described in Section 1.3 and examine the estimated odds ratios for adjacent categories that
are in boxes in Table 1.8. If the adjacent categories logit models holds, then the odds ratios for dif-
ferent response options for a predictor should be equal. The only odds ratios in Table 1.8 that are
comparable in value are those for school-mean centered time reading (i.e., for pseudo-likelihood es-
timation, 1.19, 1.17 and 1.13, and for MLE, 1.35, 1.14 and 1.14). The fact that some of the adjacent
categories odds ratios for predictors are significantly different from 1 but others for the same predic-
tor equal 1 implies that the adjacent categories model is not appropriate. For example, the odds ratio
for Girls comparing Daily versus Weekly and Weekly versus Monthly both equal 1, but Monthly
versus Never equals 1.47, which is significantly different from 1. Since the adjacent categories mod-
els parameters equal multinomial model parameters with linear restrictions on them, Wald tests as
described in Section 1.3.3 can be constructed to test the restrictions implied by the adjacent cat-
egories models. However, given the odds ratios in Table 1.8, it is unlikely that the assumption of
equal effects of the predictors will hold, except for school-mean centered time reading. This implies
the adjacent category model will not fit the data well. Although we go no further with this example,
one possible model that would be interesting to investigate is a “partial adjacent categories” model
where some but not all the predictors have equal effects for adjacent response options.

1.4.3 Cumulative Probabilities

A third common choice for ordinal response data is the proportional odds model where the cumula-
tive probabilities, P(Yi j ≤ k), are modeled using a multilevel logit formulation. The cluster specific



24 MULTILEVEL MODELING OF CATEGORICAL RESPONSE VARIABLES

(Level 1) proportional odds model is

log
(

P(Yi j ≤ k)
P(Yi j > k)

)
= β0 jk +

P

∑
p=1

βp jxi j for k = 1, . . . ,K −1, (1.34)

where the intercepts have the same order as the response options (i.e., β0 j1 ≤ β0 j2 ≤ . . .≤ β0 jK), and
the cluster-specific regression coefficients for the predictors are the same regardless of the response
option.

Similar to the adjacent categories model, since there is a single regression coefficient for each
xpi j, the effect of xpi j is the same regardless of which cumulative odds ratio is examined. In other
words, the odds ratios for a unit change in xpi j (where xpi j only has a main effect) equals

P(Yi j ≤ k|xxx−p,i j,xpi j)
P(Yi j > k|xxx−p,i j,x∗pi j)

= exp[βp j(xpi j − x∗pi j)], (1.35)

where xpi j and x∗pi j are two values of predictor p, and xxx−p,i j are the remaining predictors that are
held fixed to some value. For a one unit change in a predictor (i.e., (xpi j − x∗pi j) = 1), the odds ratios
equal exp(βp j). The odds ratios do not depend on the response option and they only depend on the
difference between two values of the predictor variable and the value of βp j.

The Level 2 models for the cluster-specific regression coefficients for βp j are the same as those
from the adjacent categories model (i.e., (??) and (1.30)), except that the random effects do not
depend on k. Only the Level 2 intercept of the Level 1 intercept depends on the response option
k (i.e., γ00k). Furthermore, the order of these fixed effects γ00k reflect the ordering of the response
options; that is, γ001 ≤ γ002 ≤ . . .≤ γ00K .

The proportional odds model also has a latent variable interpretation. As in Section 1.2.2, a
latent variable Y ∗

i j is proposed; however, since there are now multiple categories of the response
variable, there are multiple ordered thresholds that determine the observed response based on the
latent variable. Specifically,

Yi j =


1 Y ∗

i j ≤ ξ j1
2 ξ j1 < Y ∗

i j ≤ ξ j2
...
K ξ j,K−1 < Y ∗

i j ,

and

Y ∗
i j =

Q

∑
q=1

γ0qzq j +
P

∑
p=1

(
Q

∑
q=0

γpqz j +Up j)xpi j + εi j +U0 j

The above model for Y∗i j does not have a fixed intercept γ00k. The thresholds equal the negative
of the fixed intercept γ00k in the Level 2 model for β00k; that is, γ00k = −ξ jk. In this latent variable
formulation, Y ∗

i j represents an individual’s value along some underlying continuum. The individual’s
value may randomly due to εi j and U j, but the thresholds are fixed and ordered. The distribution of
εi j determines the probability model for the observed responses (i.e., normal or logistic)6.

Estimation and the procedure to incorporated weights in the estimation of the proportional odds
models is the same as that for the baseline multinomial logistic regression models described in
Section 1.3.2. The only difference is that the probabilities P(Yi j = 1|xxxi j,zzz j,UUU j) based on the cluster-
specific proportional odds model are used in (1.21) rather than those based on the multinomial
model. To represent the probabilities, we first note that replacing the βp js in the Level 1 model by
their Level 2 models gives us the cluster-specific model for the cumulative probabilities,

log
(

P(Yi j ≤ k|xxxi j,zzz j,UUU j)
P(Yi j > k|xxxi j,zzz j,UUU j)

)
= γ00k +

Q

∑
q=0

γ0qzq j +U0 j +
P

∑
p=1

Q

∑
q=0

(γpq +Uq j)xi j for k = 1, . . . ,K −1.

6A random utility model can also be proposed where the latent variables also depend on the response option and a person
chooses the response that have the largest value Y∗

i jk . See the footnote in Section 1.2.2 for more details.



ORDINAL RESPONSE VARIABLES 25

Table 1.9 Parameter estimates of proportional odds models with and without weights. The standard errors are
empirical (sandwich) ones.

Maximum Likelihood (no weights) Pseudolikelihood (weights)
Odds Missing Odds Missing

Effect Est s.e. p Ratio Fraction Est s.e. p Ratio fraction
Intercept 1 −4.179 0.492 < .01 0.01 .03 −5.108 0.738 < .01 0.02 .02
Intercept 2 −2.791 0.488 < .01 0.03 .04 −3.681 0.733 < .01 0.03 .02
Intercept 3 −1.573 0.484 < .01 0.09 .03 −2.432 0.731 < .01 0.09 .01
Girl 0.252 0.055 < .01 1.26 .04 0.233 0.064 < .01 1.26 .05
ScreenT 1 0.071 0.028 .01 1.08 .15 0.080 0.036 .03 1.08 .20
CTimeRdg 1 0.257 0.042 < .01 1.34 .03 0.296 0.056 < .01 1.34 .01
MTimeRdg 0.927 0.203 < .01 3.58 .03 1.275 0.300 < .01 3.58 .01
Shortages 1 −0.209 0.086 .02 0.83 .03 −0.182 0.095 .06 0.83 .04
Variance 0.240 0.049 .02 0.251 0.049 .03

Mean (Std Deiviation)
−2loglike 13608.41 (11.43)
AIC 13626.41 (11.43)
BIC 13626.44 (11.43)

Using these cluster-specific cumulative probabilities, the probability of a specific response option is
found by subtraction as follows:

P(Yi j = k|xxxi j,zzz j,UUU j) = P(Yi j ≤ k|xxxi j,zzz j,UUU j)−P(Yi j ≤ (k−1)|xxxi j,zzz j,UUU j),

and P(Yi j = 1|xxxi j,zzz j,UUU j) = P(Yi j ≤ 1|xxxi j,zzz j,UUU j).

1.4.4 Example

For the proportional odds model, we used the same predictors as used for the baseline multinomial
model. The cumulative probabilities of more frequent to less frequent were modeled; that is,

P(Yi j = Daily)/P(Yi j = Daily, Weekly, Monthly or Never))
P(Yi j = Daily or Weekly)/P(Yi j = Monthly or Never)

P(Yi j = Daily, Weekly or Monthly)/P(Yi j = Never)

The model fit to the data was

log
(

P(Yi j ≤ k)
P(Yi j > k)

)
= γ0k + γ10Girli j + γ20ScreenTimei j + γ30CTimeRdgi j + γ40MTimeRdg j

+γ50Shortages j +U0 j,

where U0 j ∼ N(0,τ00) i.i.d.
The estimated parameters are reported in Table 1.9. Unlike the baseline multinomial model, the

predictor ScreenTimei j is no longer significant and whether design weights are incorporated or not
leads to different conclusions for Shortages j (i.e., it is not significant for pseudolikelihood but
is significant for maximum likelihood). One possibility is the effect of predictors are not the same
over response options. Proportional odds is a strong assumption. A partial proportional odds model
can be fit by relaxing the equal slopes assumption for some or all of the predictors (Peterson and
Harrell, 1990); that is, allow βi j to depend on the response options. The equality of the predictors
can be tested in the same way as described in Section 1.3.3. For the PIRLS example, response
option dependent γpqks were estimated for ScreenTimei j, CTimeRdgi j, and Shortages+ j. Models
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Table 1.10 Parameter estimates of partial proportional odds models with weights (pseudolikelihood) where
standard errors are empirical (sandwich) ones. A “.” for the standard error indicates that this parameter was
fixed or equated with another.

Odds Fraction
Effect Est s.e. p Est s.e. p Ratio missing
Intercept 1 −5.512 0.772 < .01 −5.378 0.747 < .01 0.01 0.01
Intercept 2 −3.783 0.752 < .01 −3.801 0.744 < .01 0.02 0.01
Intercept 3 −2.133 0.754 < .01 −2.219 0.732 < .01 0.11 0.01
Girl 0.231 0.065 < .01 0.232 0.064 < .01 1.26 0.04
ScreenT 1 0.196 0.059 < .01 0.145 0.031 < .01 1.16 0.14
ScreenT 2 0.127 0.038 < .01 0.145 . 1.16
ScreenT 3 −0.013 0.039 .73 0.000 . 1.00
CTimeRdg 1 0.338 0.086 < .01 0.298 0.056 < .01 1.35 0.02
CTimeRdg 2 0.311 0.059 < .01 0.298 . 1.35
CTimeRdg 3 0.263 0.061 < .01 0.298 . 1.35
MTimeRdg 1.266 0.308 < .01 1.274 0.306 < .01 3.58 0.01
Shortages 1 0.042 0.122 .73 0.000 . 1.00
Shortages 2 −0.167 0.099 .09 −0.227 0.074 < .01 0.80 0.06
Shortages 3 −0.286 0.117 .01 −0.227 . 0.79
Variance 0.263 0.051 0.255 0.050 0.04

with different coefficients for MTimeRdg j failed to converge. The results from the proportional odds
model that relaxes the assumption for three predictors are reported for pseudolikelihood estimation
on the left side of Table 1.10. The equality of γpqks were tested and the proportional odds assumption
appeared to be valid for only school-mean centered reading time. The tests also indicated that some
of the slopes for other effects could be combined and others could be set equal to 0. A final model
was fit to the data incorporating the changes suggested by the tests. When estimated by maximum
likelihood estimation, this final partial proportional odds model has the smallest BIC among the
models fit to cumulative odds and has essentially the same AIC as the other model in Table 1.10,
which are both smaller than the AIC from the proportional odds model. The results for the final
model are on the right-side of Table 1.10.

Over all the analysis on this data set, the basic story is the same. Holding other predictors
constant, the odds of more regular usage of the Internet for school is higher for girls than boys,
larger for students who spend more time using electronic entertainment (ScreenTime), larger for
students who read more for homework, and larger for students in schools where the average time
spend by students reading for homework is larger. The effect of shortages appears somewhat mixed.
The parameter estimates from the binary logistic model and the proportional odds suggest that
an increase in shortages is associated with a decrease in the odds of more regular usage of the
Internet. The partial proportional odds model indicates that the odds ratio for shortages equals 1
when comparing Daily usage versus less regular usage; however, the other two cumulative odds
ratio equal 0.79, which is more similar to the binary and proportional odds models. The results from
the baseline multinomial model help to explain the conflicting results. The estimated odds ratios
from the multinomial model in Table 1.8 for Daily versus Weekly and for Daily versus Monthly
both equal 1.26 (i.e., an increase in shortages is associated with an increase in odds); however, the
odds ratios for Weekly versus Never and for Monthly versus Never both equal 0.79 (i.e, an increase
in shortages is associated with a decrease in the odds of usage of the Internet). Lastly, the odds
ratio for Weekly versus Monthly equals 1. The direction of the effect of shortages changes direction
depending on which response options are compared. How to form logits and which model should
be used depends on the researcher’s goal, hypotheses, and how the results will be used.
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1.5 Software

Any section on software will quickly become out of date; however, we briefly mention those pro-
grams that are currently available and meet the following criteria: it is capable of estimating models
parameters using adaptive quadrature, can easily compute sandwich standard errors, and it can in-
corporate weights. Based on the current state of the art (and our knowledge), this list includes
SAS/NLMIXED (SAS Institue Inc, 2011a), STATA/GLAMM (Rabe-Hesketh and Skronkal, 2012),
and Mplus (Muthén and Muthén, 1998-2010).

Mplus is capable of estimating parameters for the random effects binary logistic regression and
proportional odds models, but it not capable of estimating random effects multinomial, adjacent
categories, partial proportional odds models, or variations of these models. SAS/NLMIXED and
STATA/GLAMM can estimate a wider range of models. The procedure NLMIXED afforded a great
deal of flexibility with minimal programing effort, including restrictions that could be placed on
model parameters. Grilli and Pratesi (2004) described how to use SAS/NLMIXED for the binary
logistic regression and proportional odds models; however, we modified and simplified it for the
models discussed in this chapter. Grilli and Pratesi (2004) used more complicated procedures to
retain multiple decimal places of the Level 2 weights and to obtain reasonable standard errors. This
complexity is not necessary. At least for the current release of SAS (version 9.3), the incorporation
of Level 2 weights does not require any tricks because the command to include the Level 2 weights
permits non-integer values7. The second difficulty that Grilli and Pratesi (2004) encountered was
the computation of standard errors; however, sandwich estimates may be easily obtained by using
the NLMIXED option EMPIRICAL. STATA/GLAMM can fit models with more than two levels;
whereas, Mplus and SAS/NLMIXED can only deal with two level models.

1.6 Discussion

A wealth of information is available from large scale national and international survey data, much
of which is open source. Although many surveys are designed to measure educational achievement,
a large number of surveys and items on even those created to measure educational attainment can be
used to study a variety of topics. For example, in this chapter we studied Internet usage for school
work by fourth grade students. Given that questions often have categorical response options, they
should be modeled using a model designed for discrete data. Which specific model a researcher
uses depends on what is appropriate for the data and meets the researcher’s goal and hypotheses.
For example, if a researcher wants to contrast or compare response options for pairs of ordered
categories, then the adjacent categories model would be useful; however, if one wants to make
statements about effect above or below various points on the response scale, a (partial) proportional
odds model might be the best choice. Substantive considerations are of paramount importance, but
so is taking into consideration the nature and characteristics of the data at hand.

The methodology for analyzing complex survey data with multilevel models for discrete re-
sponse variables is a quickly changing field. This chapter presented what we feel is the current state
of affairs. Additional software options for fitting multilevel survey data with design weights are
likely to become available over time. Furthermore, the methods developed for missing data in the
context of multilevel models is an active area of research and we expect that more efficient meth-
ods than what was employed here will become available (e.g., Swoboda, 2011; Kim and Swoboda,
2012, April). Regardless of these shortcomings, models, methodology and tools exist to analyze
discrete response data from large scale survey data in an appropriate manner.

7The SAS/NLMIXED documentation describing the command REPLICATE that is used to specify Level 2 weights is
not accurate. The documentation states that the variable must have positive integer values; however, this is not the case
(Kathleen Kiernan, SAS Technical Support Statistician, personal communication, June 2012). The values of the variable
may be positive Real numbers. Note when the REPLICATE variable contains non-integer values, the number of clusters
reported in the output will be incorrect.
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