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A Bayesian Solution to Non-convergence
of Crossed Random Effects Models

Mingya Huang and Carolyn Anderson

1 Introduction

Crossed random effects models (CREMs) have become the method of choice
in studies in which every subject sees every stimulus and every stimulus is
viewed by every subject (Baayen et al., 2008). Researchers often encounter a
non-convergence problem when fitting CREMs with Maximum likelihood based
methods (MLE/REML) because of the complexity of random effects structure
and small sample sizes. A common strategy is to simplify models (i.e., using
random intercepts only). We conducted an informal survey of articles from the
Journal of Memory and Language from 2015 to 2019 citing Baayen et al. (2008)
paper, and found that 43% of these articles utilizing CREMs do not include
random slopes and/or removed them to achieve convergence. However, improper
model structure will impact the parameter estimates as well as their standard
errors. Under-parameterization of the covariance structure invalidates inference,
and over-parameterization of the covariance structure leads to inefficient estimation
(Molenberghs and Verbeke, 2000). If random slopes are removed from a level, the
variance(s) related to that level will be redistributed to other levels and therefore
result in inaccurate standard errors (Snijders, 2011). Similarly, omitting incorrect
fixed effect structures will also lead to incorrect estimates for both random and
fixed effects (Raudenbush and Bryk, 2002). To achieve valid inferences, Barr et al.
(2013) proposed the maximal model structure for confirmatory factor analysis with
every possible random effects rather than simplifying the models so long as the
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design justifies. Bates et al. (2015) also argued that the models should not be too
simple or too complex, but just right for optimal statistical inference. An advantage
of appropriate modeling of the covariance structure is that it can help explain the
random variability captured by the fixed effects.

Estimators from both MLE and REML, two typical methods fitting hierarchical
linear models, are both consistent and efficient, but these estimation methods often
fail to converge as models become more complex (Snijders, 2011). Unlike MLE
and REML, Bayesian approaches can be more flexible when dealing with complex
models such as CREMs (Snijders, 2011). Therefore, we investigated whether
using a Bayesian method is an efficient alternative that can solve non-convergence
problems.

2 Crossed-Random Effects Model (CREMs)

CREMs are used to fit the hierarchical data where units are simultaneously nested
in multiple types of clusters (Cho & Rabe-Hesketh, 2011). In psycholinguistic
research, there is usually one observation/trial per cell in a design crossed by subject
and stimuli. An example of a two-level CREM for this type of cross-classification
designs is

Yij = γ00+
∑

p

γ0pxpi +
∑

q

γq0zqj +U0i +
∑

p

Upixpi +W0j +
∑

q

Wqj zqj +Rij ,

(1)

3 Bayesian Approach

In Bayesian estimation, samples of parameter estimates are drawn from their poste-
rior distribution, which are proportional to the product of a marginal probability of
the parameter and the conditional probability of the data given the parameters. Let
θ be a vector of model parameters and Y represent data. The posterior distribution
of parameters conditional on data is

f (θ |Y ) ∝ f (Y |θ) f (θ) , (2)

where f (Y |θ) is the likelihood, and f (θ) is the prior distribution which reflects
our preceding knowledge of the parameters. We set non-informative priors for both
fixed effects (i.e., N(0, 100) which is essentially flat), and variance of the random
effects (i.e., Cauchy(0, 5)) based on recommendations from (Gelman, 2006). In
simple cases, the posterior distribution can be found analytically (e.g., proportion
from a binomial distribution), but for more complex cases, Markov Chain Monte



A Bayesian Solution to Non-convergence of Crossed Random Effects Models 299

Carlo (MCMC) is used to sample from the posterior. A Markov chain is a sequence
of draws of random variables for which the probability depends only on the previous
variable. The sequence of possible estimates for each parameter is known as a
“chain,” with multiple chains typically run for each parameter. We use Hamiltonian
algorithms to iteratively sample the posterior distribution, which is implemented in
the brms package (Bürkner, 2017) in R (3.6.2), that function as a wrapper for Stan
(Carpenter et al., 2017). Convergence was based on the potential scale reduction
factor (R̂), which estimates the potential decrease in the between-chains variability
relative to the within-chain variability. We expect R̂ to be close to 1 at convergence,
and Gelman and Rubin (1992) suggests 1.1 as the cutoff value. We also checked
the plots of posterior densities, trace plots, and autocorrelation plots to evaluate
convergence. The number of Markov chains was set to be 4 with 8,000 iterations per
chain where the first 4,000 iterations were warm-ups. The chains were “thinned,” a
procedure that keeps every kth sample (parameter estimate). We retained every 10th
sample, and thus the posterior is only based on 400 sample values for each chain.

4 Simulation

A simulation study with 20 replications was conducted to evaluate the performance
of MLE, REML, and Bayesian estimation of CREMs. Data were simulated from
CREMs with two or four random slopes and 20 or 50 stimuli and subjects, yielding
four conditions (Table 1). For each of the four simulated conditions, we fit an under-
specified model (only random intercepts) and the correctly specified model (used to
simulate data) using each estimation method. The simplest model fit to data in this
study was the random intercepts model,

Yij = γ00 + γ01x1i + γ10z1j + γ02x2i + γ20z2j + γ03x3i + γ30z3j + γ04x4i

+U0i +W0j + Rij . (3)

The model with two random slopes (i.e. condition 1 and 3) was

Yij = γ00 + γ01x1i + γ10z1j + γ02x2i + γ20z2j + γ03x3i + γ30z3j + γ04x4i

+U0i + U1ix1i +W0j +W1j z1j + Rij . (4)

Table 1 Summary of four
conditions of simulation
study

Conditions # Subject × # Stimuli # Random Slopes

Condition 1 20 × 20 2 slopes

Condition 2 20 × 20 4 slopes

Condition 3 50 × 50 2 slopes

Condition 4 50 × 50 4 slopes
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Table 2 Models parameters for the fixed effects (left) and distributions (right) from which random
effects were drawn for i,j=20,50 on each replication of the simulation study

Fixed effects parameters Random effects parameters

Subject-specific Stimuli-specific Subject-specific Stimuli-specific

γ0p γq0 Uri Wrj

γ00 = 1.00

γ01 = −2.00 γ10 = 2.00 U0i ∼ N(0, .16), W0i ∼ N(0, .49)

γ02 = .30 γ20 = 2.00 U1i ∼ N(0, .04), W1i ∼ N(0, .16)

γ03 = .50 γ30 = .20 U2i ∼ N(0, .36), W2i ∼ N(0, .81)

γ04 = 1.00

Rij ∼ N(0, 1.00)

For the more complex case of 4 random slopes (i.e. condition 2 and 4) was

Yij = γ00 + γ01x1i + γ10z1j + γ02x2i + γ20z2j + γ03x3i + γ30z3j + γ04x4i + U0i

+U1ix1i + U2ix2i +W0j +W1j z1j +W2j z2j + Rij . (5)

Data from models (4) and (5) were simulated for i, j=20, 50. For each replication
of the simulated models, values for xpi and zqj were drawn from the following
distributions: x1i ∼ N (0, 2.00); x2i ∼ N (0, 3.00); x3i ∼ N (0, 1.25); x4i ∼
Bernoulli (0.1); z1j ∼ N (0, 1.75); z2j ∼ N (0, 2); and z3j ∼ N (0, 2.25). The
fixed effects parameters and the distributions for random effects are given in Table 2.

5 Results

5.1 Convergence Rate

Table 3 summarized the convergence rates of each condition out of 20 replications.
All models using a Bayesian approach yield convergence rates of 100%. In Con-
dition 1 and MLE, 70% of the under-specified models converged and only 10% of
the correctly specified models converged. For REML, 82.5% of the under-specified
models converged and only 15% of the correctly specified models converged.
In Condition 2, both MLE and REML obtained 100% convergence rates for the
under-specified models; however, they both failed to converge even with different
optimizers such as NEALTHER-MEAD and BOBYQA in all replications when
trying to fit the correctly specified model. In Condition 3, the under-specified models
fit by either MLE and REML converged in all cases; however, the convergence rates
of the correctly specified model for MLE and REML were only 40% and 45%,
respectively. In Condition 4, 100% of the under-specified models converged for both
MLE and REML. However, only 20% of the correctly specified models fit by MLE
converged, and only 32.5% for REML of the correctly specified models converged.
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Table 3 Convergence rates of under-specified models (only random intercepts) and the correctly
specified models

#Subjects × # Random Model

Conditions #Stimuli slopes fit MLE REML Bayesian

Condition 1 20 × 20 2 Under-specified 70% 82.5% 100%

Correctly specified 10% 15% 100%

Condition 2 20 × 20 4 Under-specified 100% 100% 100%

Correctly specified 0% 0% 100%

Condition 3 50 × 50 2 Under-specified 100% 100% 100%

Correctly specified 40% 45% 100%

Condition 4 50 × 50 4 Under-specified 100% 100% 100%

Correctly specified 20% 32.5% 100%

With 100% convergence rates, the results indicate that a Bayesian approach is a
viable alternative of MLE/REML to deal with convergence problems. Note that
as the random effects structure of the model used to simulate data became more
complex, it was less likely for the correctly specified model to converge with
either MLE or REML. As the number of subjects and stimuli increased, the under-
specified model using MLE/REMLwas more likely to converge. In addition, REML
yielded a higher convergence rate than MLE in some conditions, suggesting REML
as a useful alternative when MLE encounters non-convergence.

5.2 Parameter Recovery

We discuss the efficiency and validity of the Bayesian parameter estimates. Tables 4
and 5 summarize the mean of Bayesian estimates, 95% credible intervals, the
scale reduction factor R̂, root mean squared error (RMSE), and bias for the 20
replications. In Table 4, the R̂s are less than 1.20, indicating convergence. The fixed
effects estimates are similar to the values used to simulate the data in both 20 × 20
and 50 × 50 cases. In contrast, the random effects estimates in the under-specified
model deviate from the values used to generate the data while the correctly specified
model yield similar variance estimates which are close to the true ones. The RMSEs
and biases are smaller in the correctly specified models. As the sample size increases
from 20 × 20 to 50 × 50, the estimated values become closer to the true values.

Similarly, in Table 5, the fixed effects estimates are close to the true values and are
more accurate in the correct model than the under-specified model. For the random
effects, the under-specified models yield the variance estimates that deviate from
the true values, but they are similar in the correct model. These results are supported
by smaller RMSEs and biases for the correctly specified model, with no discernible
pattern in the biases. Comparing Tables 4 and 5, we find that as the model become
more complex (from two to four slopes), the bias and the RMSEs for random effects
also increase. Additionally, the deviations between the estimates and true values are
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larger in the under-specified models than in the correctly-specified models in all
conditions.

Overall, for both under-specified and correctly specified models, the fixed
effect parameters were well recovered when using Bayesian estimation. However,
differences were found with respect to the 95% credible intervals for the fixed
effects. The intervals for the correctly specified models were narrower than the
ones from the under-specified model, which was even more prominent with larger
sample sizes. Similarly, the random effects variance parameters were recovered
better in the correctly-specified models. Also, only the 95% credible intervals in
the correctly specified models covered the true values used to simulate the data.
The variance estimates for under-specified models have poor performance, and
variance parameters were over-estimated such that the 95% credible intervals did
not cover the true values used to simulate the data. For correctly specified models,
the 95% credible intervals were narrowed for larger sample sizes (and given model
complexity) and were narrower for simpler models (for given sample size).

6 Conclusion

Although some previous studies have examined the convergence problems of
random effects models and promote a Bayesian approach as a solution (Eager &
Roy, 2017), none have specifically considered CREMs. This study is the first to do
so, and provides solid evidence for a Bayesian approach when fitting the CREMs to
data over MLE/REML. Comparing convergence rates of MLE/REML and Bayesian
approaches, the latter obtained 100% convergence rates (R̂s < 1.1). As the model
became more complex with more random effects, the convergence rates decreased
under MLE/REML. Furthermore, the Bayesian estimates of both fixed effects and
random effects were valid and efficient in the correctly-specified models but not in
the under-specified models. This study highlighted three important points: (1) an
improper model structure will result in inefficient estimation and invalid results (2)
for more complex random effects structures, the models using Bayesian approach
can achieve model convergence but not MLE/REML (3) using Bayesian approach
to fit the CREMs can obtain efficient estimates. Future studies will explore whether
using a Bayesian approach can select an optimal model.
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