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Chapter 2
Generalized Linear Models

2.1 Introduction

Multiple regression and ANOVA dominated statistical analysis of data in the social
and behavioral sciences for many years. The recognition that multiple regression and
ANOVA are special cases of a more general model, the general linear model, was
known for many years by statisticians, but it was not common knowledge to social
science researchers until much later1. The recognition of the connection between
multiple regression and ANOVA by social scientists provided “possibilities for more
relevant and therefore more powerful exploitation of research data” [p 426, Cohen,
1968]. As such, the general linear model was a large step forward in the development
of regression models.

In the general linear model framework, response variables are assumed to be nor-
mally distributed, have constant variance over the values of the predictor variables,
and equal linear functions of predictor or explanatory variables. Transformations of
data were developed as ways to force data into a normal linearregression model;
however, this is no longer necessary nor optimal. Generalized linear models (GLM)
go beyond the general linear model by allowing for non-normally distributed re-
sponse variables, heteroscedasticity, and non-linear relationships between the mean
of the response variable and the predictor or explanatory variables.

First introduced by Nelder & Wedderburn (1972), GLMs provide a unifying
framework that encompasses many seemingly disparate models. Special cases of
GLMs include not only linear regression and ANOVA, but also logistic regression,
probit models, Poisson regression, log-linear models, andmany more. An additional
advantage of the GLM framework is that there is a common computational method
for fitting the models to data. The implementation of this method in software pro-
grams opened up the ability of researchers to design models to fit their data and to

1 Fisher (1928) was one of the first (if not the first) to realizedthe connection between multiple
regression and ANOVA (see also Fisher (1934)). The relationship was fully described in paper by
Wishart (1934). The general linear model representation ofANOVA can also be found in Scheffe
(1959)’s text on ANOVA. A classical reference in the social sciences is Cohen (1968).

3



4 2 Generalized Linear Models

fit a wide variety of models, including those not previously proposed in the litera-
ture. Many software packages are now available for fitting GLMs to data, including
SAS (SAS Institute, 2003), S-Plus (Insightful Corporation, 2007), R (R Core Team,
2006), Stata (–reference–) and others.

In the GLM framework, models are constructed to fit the type ofdata and prob-
lem at hand. Three major decisions must be made. The first is the random compo-
nent that consists of choosing a probability distribution for the response variable.
The distribution can be any member from thenatural exponential dispersion fam-
ily distributions or theexponential family, for short2 Special cases of this family of
distributions include the normal, binomial, Poisson, gamma, and others. The second
component of a GLM is thesystematic componentor linear predictorthat consists
of a linear combination of predictor or explanatory variables. Lastly, alink function
must be chosen that maps the mean of the response variable onto the linear predictor.

As an example, consider research on cognition and aging by Stine-Morrow,
Miller, Gagne & Hertzog (2008). In their research, they measure the time it takes an
elderly individual to read words presented on a computer screen. Reaction times are
non-negative continuous variables that tend to have positively skewed distributions.
A common strategy is to use normal linear regression by trying to find a transforma-
tion of reaction times such that they are normally distributed with equal variances
and linearly related to the predictor variables. Rather than using a normal distribu-
tion, a positively skewed distribution with values that arepositive real numbers can
be selected. The systematic component of the model can potentially equal any real
number, but the link function can be chosen to ensure that thepredicted means are
in the permissible range (i.e., non-negative real numbers). In regression, we model
means conditional on explanatory or predictor variables. The link is not applied to
the data, but to the expected value or mean of the response. Asa result, the choice
of a distribution for the responses is based on the nature of the response variable
without regard to what transformation (of means) is chosen.

Although GLMs do not take into account clustering or nestingof observations
into larger units (e.g., repeated measures on an individual, students within peer
groups, children within families), GLMs are an ideal starting point for our mod-
eling approach. GLMs include models for response variablesthat are continuous or
metric variables and those that are discrete. In the subsequent chapters, the GLM
approach is extended to include random effects as a way to deal with dependency
between observations created by grouping, clustering or nesting of observations into
larger units.

In Section 2.2, the three components of a GLM are discussed indetail. In Sec-
tions 2.3, examples for continuous variables and discrete variables are presented to
illustrate how GLMs are formed, as well as introduce some of the data sets that will
be re-analyzed later in the book. In Section 2.4, a general overview of estimation
is given that also includes problems and solutions sometimes encountered when fit-

2 Thenatural exponential dispersionfamily and thenatural exponential familyof distributions are
often used interchangeably. The former include distributions characterized by a single parameters
(i.e., location or mean); whereas the latter is a more general and includes distributions with one or
two parameters (i.e., mean and dispersion).
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ting GLMs to data. In Sections 2.5 and 2.6, the statistical issues of assessing model
goodness-of-fit to data and statistical inference of model parameters (i.e., hypothesis
testing, confidence intervals), respectively, are presented and illustrated. In the last
section, Section??, technical details are covered. For more detailed descriptions of
GLMs than given here see McCullagh & Nelder (1989), Fahrmeir& Tutz (2001),
Dobson (1990), and Lindsey (1997), and specifically for categorical data see Agresti
(2002, 2007).

2.2 The Three Components of a GLM

Model building using GLMs starts with initial decisions forthe distribution of the
outcome variable, the predictor or explanatory variables to include in the systematic
component, and how to connect the mean of the response to the systematic compo-
nent. Each of these three decisions is described in more detail in the following three
sections.

2.2.1 The Random Component

A reasonable distribution for the response variable must bechosen. For example,
in work by Espelage, Holt & Henkel (2003) on the effects of aggression during
early adolescence, one way to measure the extent to which a child is aggressive
(i.e., a bully) is a student’s score on the self-report Illinois Bully Scale (Espelage &
Holt 2001). The bully scores are typically thought of as a “continuous” or metric
measures, because scores equal the mean of nine items each ofwhich is scored
from 0 to 4 (i.e., there are 37 possible scores). The distribution selected for the
Illinois Bully Scale should be one that is appropriate for a continuous variable. An
alternative way to measure “bullyness” is the number of students who say that a
child is a bully (i.e., peer nominations). The peer nomination measure is a count and
a distribution for a discrete integer variable should be selected.

The distribution selected is not the “true” distribution inthe population, but is
an approximation that should be a good representation of theprobably distribution
of the response variable. A good representation of the population distribution of
a response variable should not only take into account the nature of the response
variable (e.g.,continuous, discrete) and the shape of the distribution, but it should
also provide a good model for the relationship between the mean and variance. For
example, a normal distribution might seem like a sensible distribution for the bully-
scale; however, the bully scale is bounded with minimum equal to 0 and maximum
equal to 4. The possible values of mean and variance depend onthe bounds, as
well as the shape of the distribution. For example, the mean of the bully scale can
equal any value from 0 to 4. If values of the bully scale are uniformly distributed
between 0 and 4, the mean would equal 2 and the variance of (a discrete random)
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variable would equal 1.41. The value of the variance of a bounded scale depends on
the shape of the distribution and the end points of the scale.In Chapter??, the beta
is a distribution for continuous variables with lower and upper bounds is presented
along with beta-regression models.

Within the GLM framework, the distribution for a response variable can be any
member of the natural exponential dispersion family. Members of the natural ex-
ponential family for continuous response variables include the normal, gamma,
and inverse Gaussian distribution, and for discrete outcome variables the Poisson,
Bernoulli, and binomial distributions. Other useful distribution some of which are in
the exponential family and others that are not will be introduced later in the text. The
distributions introduced in this chapter provide a representation of the distribution
for many common measures found in psychological and social studies research.

A natural exponential dispersion distribution has two parameters, anatural pa-
rameterθ and adispersion parameterφ . The parameterθ conveys information
about the location of the distribution (i.e., mean). When the distribution is expressed
in its most basic or canonical form, the natural parameterθ is a function of the mean
µ of the distribution. This function is known as thecanonical link. Link functions
are discussed in more detail in Section 2.2.3.

Variances of particular distributions in the exponential family equal a function
of µ andφ . In GLMs, non-constant variance or heteroscedasticity is expected. The
only exception is the normal distribution where the mean andvariance are indepen-
dent of each other and the variance equals the dispersion parameter (i.e.,σ2 = φ ).
For distributions that haveφ = 1, the variance is solely a function of the mean (e.g.,
Poisson and Bernoulli distributions). In GLMs, theφ parameter is often regarded as
a nuisance parameter and attention is focused mostly on the mean. This will not be
the case later in this book.

Below we review the basic characteristics of the normal, gamma, and inverse
Gaussian distributions for continuous variables, and the Bernoulli, binomial and
Poisson distributions for discrete variables. More technical details regarding the
natural exponential distribution are given in Appendix??. Other distributions are
introduced latter in the text as they are needed.

2.2.1.1 Normal Distribution

The most well known and familiar distribution for continuous random variables is
the normal distribution. A normal distribution is characterized by its meanµ and
varianceσ2. The probability density function for the normal distribution is

f (y;µ ,σ2) =
1√

2πσ2
exp

[−(y− µ)2

2σ2

]
for −∞ < y < ∞. (2.1)

A particular normal distributions is represented byN(µ ,σ2). Typically, the param-
eter of most interest is the meanµ . In GLM terminology,θ = µ is the natural
parameter of the normal distribution andφ = σ2 is the dispersion parameter.
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Fig. 2.1 Four examples of normal distributionsN(µ ,σ 2) with different combinations of means
and variances.

Examples of four normal distributions are given in Figure 2.1. Normal distribu-
tions are uni-modal and symmetric around the meanµ . Note that two distributions
with different means but the same variance (e.g.,N(0,1) andN(2,1)) have the same
shape and only differ in terms of their location. Alternatively, two distributions with
the same mean but different variances have the same locationbut differ in terms
of dispersion or spread of values around the mean (e.g.,N(0,1) andN(0,4)). The
mean or variance can be altered without effecting the other;that is, the mean and
variance of a normal distributions are independent of each other.

Although measured variables are never truly continuous, a normal distribution is
often a good representation or approximation of the distribution for many response
variables, in part due to the Central Limit Theorem. Theoretical variables such as
the random effects introduced in the next chapter are most commonly assumed to
be normally distributed. The normal distribution also plays an important role as the
sampling the distribution of parameter estimates (e.g., regression coefficients) and
many test statistics.
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2.2.1.2 Gamma Distribution

When the distribution of a response variable is not symmetric and values of the
response variable are positive (e.g., reaction times), a normal distribution would
be a poor representation of the distribution. An alternative distribution for skewed,
non-negative responses is the gamma distribution.

A gamma distribution is often presented in terms of two parameters, a shape pa-
rameter and a scale parameter. Since our emphasis is on regression models, we will
present the gamma distribution parameterized in terms of its meanµ and dispersion
parameterφ . A particular gamma distribution will be represented as Gamma(µ ,φ).
The probability density function for a gamma distribution is

f (y;µ ,φ) =
1

Γ (φ−1)

(
1

µφ

)1/φ
y1/φ−1exp(−y/(µφ)) for y > 0, (2.2)

whereΓ is a gamma function. A gamma function can be thought of as a factorial
function (i.e.,y! = y(y−1)(y−2) . . .1), except that it is for real numbers rather than
integers.

The natural parameter of the gamma distribution isθ = 1/µ . The parameters
µ and φ can be any positive real number. To see the effect thatµ and φ have
on the shape of the distribution, four examples of Gamma distributions are given
in Figure 2.2. The gamma distributions are positively skewed. For a givenµ ,
as φ gets smaller, the distribution becomes less skewed (e.g., Gamma(4,1) and
Gamma(4,0.50)). For a givenφ , as µ gets larger, the distribution becomes less
skewed (e.g., Gamma(4,0.50) and Gamma(6,0.50)).

Unlike the normal distribution where the mean and variance are independent of
each other, for a gamma distribution the variance is a function of the mean and the
dispersion parameter. The variance is a quadratic functionof the mean; namely,

σ2 = µ2φ .

To further illustrate this relationship, in Figure 2.3 the variance is plotted as a func-
tion of the mean for gamma distributions whereφ equals 2, 1, 0.50, 0.33 and 0.25.
When responses are skewed, using a gamma distribution in a regression context not
only implies heteroscedasticity, but it implies a specific relationship between the
mean and variance should exist.

Special cases of the gamma distribution correspond to otherwell known skewed
distributions for continuous random variables. Whenφ = 1 (e.g., Gamma(4,1) in
Figure 2.2), the distribution is the exponential distribution with a rate parameter
equal to 1/µ . The exponential distribution, a special case of the natural exponential
family of distributions, is often used for rates of decay or decline. Another special
case of the gamma distribution is the chi-squared distribution. A gamma distribution
with µ = ν andφ = 2/ν is a chi-squared distribution whereν equals the degrees of
freedom of the chi-square distribution. For example, in Figure 2.2, Gamma(4,0.50)
is a chi-square distribution withν = 4 and Gamma(6,0.33) is chi-square withν =
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Fig. 2.2 Examples of four Gamma distributions Gamma(µ ,φ) with different combinations of
mean and dispersion parameters.

6. Like the normal distribution, the chi-square distribution is also important as a
sampling the distribution of many test statistics.

2.2.1.3 Inverse Gaussian Distribution

The inverse Gaussian distribution is probably the least familiar distribution to social
scientists. Similar to the gamma distribution, the inverseGaussian is a skewed distri-
bution for non-negative continuous random variables. Although the normal (Gaus-
sian) and inverse Gaussian distributions share some of the same properties, the name
“inverse Gaussian” is a bit miss-leading in that this distribution is not derived from
a normal distribution3

3 The distribution was first derived to describe Brownian motion with positive drift (Chhikara &
Folks 1988, Seshadri 1998). Brownian motion is basically the movement of particles over time
where there is a tendency for particles to move more in one direction than another. The term
“inverse” comes from the fact that the cumulate-generatingfunction4 for the time to cover a unit
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Fig. 2.3 The relationship between the mean and variance of gamma distributions whereφ ranges
from 2 to 0.25.

The inverse Gaussian distribution has a number of differentparameterizations
(Chhikara & Folks 1988, Seshadri 1998). As before, we parameterize the distribu-
tion in terms of its meanµ and dispersion parameterφ . Both µ andφ are positive
real numbers. The probability density for the inverse Gaussian is

f (y) =
1√

2πy3φ
exp

[
− (y− µ)2

2µ2φy

]
for y > 0. (2.3)

We will represent a particular inverse Gaussian distribution as IGauss(µ ,φ).
Examples of inverse Gaussian distributions are given for different values ofµ and

φ in Figure 2.4. The dispersion parameter essentially controls the shape of the distri-
bution. For example, compare the IGauss(2,1.0), IGauss(2,0.1) and IGauss(2,0.001)
that are given in Figure 2.4. As the dispersion parameter decreases, the inverse Gaus-
sian distribution becomes more symmetric.

of distance is inversely related to the function of the distance covered in a unit of time (Chhikara
& Folks 1988).
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Fig. 2.4 Examples of inverse Gaussian distributions IGauss(µ ,φ) with different mean and disper-
sion parameters.

Some authors use the symbolσ2 rather thanφ to represent the dispersion param-
eter. We useφ here becauseσ2 is typically used to represent variance; however, the
variance of the inverse Gaussian distribution is neitherσ2 nor φ . The variance of
the distribution equals

var(y) = µ3φ . (2.4)

This is similar to the variance function of the Gamma distribution except that the
variance for the inverse Gaussian increases more sharply asthe mean increases.

2.2.1.4 Bernoulli Distribution

Many response variables are clearly discrete, such as correct or incorrect, agree or
disagree, true or false, sick or well, and fights or does not fight. The Bernoulli and
binomial distributions apply to cases where the response variable can take one of
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two possible values (i.e. a dichotomous response). Since the binomial distribution
depends on the Bernoulli distribution, we start with the Bernoulli.

Let y∗ equal a Bernoulli random variable where

y∗ =

{
1 if an observation is in category one
0 if an observation is in category two

. (2.5)

The parameter of the Bernoulli distribution is the probability π that an observation
is in category one. The probability function fory∗ is

P(y∗ = y;π) = P(y;π) = πy(1−π)1−y for y = 0,1. (2.6)

The mean isπ , the dispersion parameter for the Bernoulli isφ = 1, and the variance
is solely a function of the mean; specifically,

var(y∗) = π(1−π) = µ(1− µ). (2.7)

In Figure 2.5, the curve showing this relationship is labelled n = 1. The variance
reaches a maximum whenπ = 0.5, the point of maximum uncertainty. This general
shape of the variance function is often found for distributions for bounded scales.

2.2.1.5 Binomial Distribution

Sums ofn independent observations from a Bernoulli distribution have a binomial
distribution; that is,

y =
n

∑
i=1

y∗
i

is a binomial random variable. The parameter of the binomialdistribution is the
probabilityπ and a specific case of the binomial distribution will be represented as
Binomial(π ,n). When using the binomial distribution, interest is focusedon esti-
mating and modeling the probabilityπ . The number of observations or “trials” is
a known quantity. Binomial random variables can equal integer values from 0 ton.
The probability that a binomial random variable equalsy is

P(y = y;π ,n) = P(y;π ,n) =

(
n
y

)
πy(1−π)(n−y) for y = 0,1, . . . ,n. (2.8)

The binomial coefficient (
n
y

)
=

n!
y!(n−1)!

equals the number of ways to obtain the value ofy from n trials. Forn = 1, the
Bernoulli distribution is the same as the binomial.

The mean and variance of a Binomial random variable equal

E(y) = µ = nπ and var(y) = nπ(1−π). (2.9)
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Fig. 2.5 Examples of the variance function for the binomial distribution with n = 1,5,10,15.

For the binomial distribution the dispersion parameter isφ = 1/n. The variance
function for the binomial distribution for different values of n are plotted in Fig-
ure 2.5. Regardless ofn, the largest variance (i.e., point of maximum uncertainty)
occurs whenπ = .5.

Not all discrete response variables have only two possible categories. In Chap-
ter??, the binomial distribution will be extended to the multinomial distribution for
situations where there are two or more categories.

2.2.1.6 Poisson Distribution

Discrete variables can also be unbounded counts; that is, non-negative integers that
do not necessarily have a maximum value. For example, in the research by Es-
pelage et al. (2008), one way to measure the extent to which a child is a bully is
by peer nominations. In this study, students in the school could nominate anyone
in the school as a bully so that the number of bully nominations received by any
one students are strictly speaking bounded by the number of students in the school.
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Fig. 2.6 Examples of Poisson distributions with different means.

However, since no student received bully nominations closeto the maximum num-
ber of students in the school, we consider bully nominationsas an unbounded count.
In such situations where the response variable is a count, the Poisson distribution is
often a good approximation of the distribution.

The parameter of the Poisson distribution is the mean5 µ and the dispersion pa-
rameter isφ = 1. Let y be a Poisson random variable where possible values ofy
equal non-negative integers (i.e.,y = 0,1,2, . . .). The probability that a Poisson ran-
dom variable equalsy

P(y = y;µ) = P(y;µ) =
e−µ µy

y!
for y = 0,1, . . . . (2.10)

Figure 2.6 gives four examples of Poisson distributions with means of 1, 2, 15 and
25. The smaller the mean, the more positively skewed the distribution. In Figure 2.6
(d) whereµ = 25, the distribution is uni-modal and looks fairly symmetric. If we

5 Some authors use the symbolλ to represent the parameter of the Poisson distribution. Since the
mean of the Poisson equalsλ , we useµ as the parameter of the distribution.
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had a response variable (integer values) with the distribution illustrated in Figure 2.6
(d), we might be tempted to use a normal distribution for the response variable.
However, unlike the normal distribution, for a Poisson distribution the mean equals
the variance

µ = σ2. (2.11)

Using a normal distribution for a count would violate the assumption of equal vari-
ances. Heteroscedasticity is expected for counts.

2.2.2 The Systematic Component

The random component of a GLM accounts for unsystematic random variation in
observations. The systematic component of a model is the fixed structural part of the
model that will be used to explain systematic variability between means. The sys-
tematic component or linear predictor of a GLM is a linear function of explanatory
or predictor variables. The linear predictor is the same as the right-side of a normal
linear regression model.

Letx1, . . . ,xQ equal potential predictor variables. No restrictions are placed on the
explanatory variables. They can be numeric or discrete. Fordiscrete variables, the
x’s can be dummy codes, effect codes, or any coding deemed useful or appropriate
to represent the categories of a variable. The linear predictor is

η = β0 + β1x1 + . . .+ βQxQ

= βββ ′xxx, (2.12)

whereβββ = (β0,β1, . . . ,βQ)′ is a vector of regression coefficients andxxx= (1,x1, . . . ,xQ)′

is a vector of values on the predictor variables. Althoughη is a linear function of
the xs, it may be nonlinear in shape. For example,η could be a quadratic, cubic
or higher-order polynomial. Spline functions are linear functions, but they gener-
ally are not linear in shape. Transformation of the predictors are also possible (e.g.,
ln(x), exp(x), etc.), as well as interactions (e.g.,x1x2).

When a predictor variable is discrete, the regression curvewill be disjoint. For
example, Allen, Todd and Anderson (in preparation) assessed whether outcomes of
cases of domestic violence in the state of Illinois changed after the formation of
councils that provided a coordinated response to domestic violence. In one study,
they modeled the change over time in the rate of extensions oforders of protection.
Before council formation, there was no change; however, after formation, there was
a jump in the number of extensions and subsequently a slow increase from that point
on. This disjoint function was modeled using a dummy code forwhether a council
existed in a particular judical circuit (i.e.,x1 = 1 if council, x1 = 0 if no council)
and an interaction between the dummy codex1 and time (time was measured as
chronological year).

In normal linear regression models, most of the attention isgiven toη and find-
ing the predictors or explanatory variables that best predict the mean of the response
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variable. This is also important in generalized linear models and problems such as
multicolinearity found in normal linear regressions are also problems in generalized
linear models. Hypothesis testing and statistical inference for the regression coeffi-
cients is discussed after we cover the last component of a GLM, the link function.

2.2.3 The Link Function

The link function allows for a non-linear relationship between the mean of the re-
sponse variable and the linear predictor. The link functiong( ) connects the mean of
the response variable to the linear predictor; that is,

g(µ) = η . (2.13)

The link function should be monotonic (and differentiable). The mean in turn equals
the inverse transformation ofg( ),

µ = g−1(η). (2.14)

The most natural and meaningful way to interpret model parameters is typically
in terms of the scale of the data, in which case we considerµ = g−1(η) =
g−1(β0+β1x1+β2xQ). This is illustrated in the examples of GLMs in Sections 2.3.3
and 2.3.4.

It is important to note that the link relates themeanof the response to the linear
predictor and this is different from transforming the response variable. If the data
are transformed (i.e.,yis), then a distribution must be selected that describes the
population distribution of transformed data. Except wheng(E(y)) = E(y), a trans-
formation of the mean generally does not equal the mean of transformed values; that
is, g(E(y)) 6= E(g(y)). As an example, suppose that we have a distribution with val-
ues (and probabilities) of 1 (0.1), 2 (0.4), 3 (0.1), 4, (0.2), 7 (0.2), and 10 (0.1). The
logarithm of the mean of this distribution is ln(E(y)) = ln(4.1) = 1.411; whereas,
the mean of the logarithm equals E(ln(y)) = 1.174.

The value of the linear predictorη could potentially equal any real number, but
the expected values of the response variable may be bounded (e.g., counts are non-
negative; proportions are between 0 and 1). An important consideration in choosing
a link function is whether the selected link will yield predicted values of the response
that are permissible. For example, with non-negative data such as count data or
reaction times, a common link is the natural logarithm.

A summary of common link functions that will yield allowablevalues for par-
ticular types of response variables and the corresponding inverses of the links are
given in Table 2.1. If there are no restrictions on the response variable (i.e., they
are real numbers that could be positive or negative), then anidentity linkmight be
chosen where the mean is identical to the linear predictor; that is,

µ = η .
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Table 2.1 Common link functions for different response variables. Note thatΦ is the cumulative
normal distribution.We should combine this information with the information in Table 2.2.
Type of response variable Link g(µ) g−1(η)
real |y| < ∞ Identity µ η
real |y| < ∞ Reciprocal 1/µ if y 6= 0 1/η

0 if y = 0
non-negativey≥ 0 Log ln(µ) µ = exp(η)
bounded 0≤ y≤ 1 Logit ln(µ/(1−µ)) exp(η)/(1+exp(η))
bounded 0≤ y≤ 1 Probit Φ−1(µ) Φ(η)
bounded 0≤ y≤ 1 Log-Log ln(− ln(µ)) exp(−exp(η))
bounded 0≤ y≤ 1 Complementary Log-Log ln(− ln(1−µ)) 1−exp(−exp(η))

Alternatively, the inverse orreciprocal link,

1/µ = η ,

is a possibility.
For response variables that are bounded between 0 and 1 (e.g., proportions or

bounded response scales), the expected values are also bounded between 0 and 1. In
such cases, a common strategy is to use a cumulative distribution function of contin-
uous random variables as link function. A cumulative response function equals the
probability that a random variable is less than a particularvalue,P(y≤ y) wherey is
continuous. The value ofP(y≤ y) equals real numbers from 0 to 1 but possible val-
ues forη may span the real numbers. Common distributions used for this purpose
are the logistic, normal and extreme value or Gumbal distributions. The cumulative
distributions for these are plotted in Figure 2.7.

Since the normal and logistic distributions are symmetric around the mean, the
corresponding links are symmetric around.5. The rate at which the curves above
P(y≤ y) = .5 increase toward 1 is the same as the rate of decrease toward 0when
the probability is below.5. The link corresponding to the cumulative distribution
function for the logistic distribution islogit link and equals the natural logarithm of
the ratio; that is,

logit(µ) = ln(µ/(1− µ)). (2.15)

Wheny is a proportion (i.e., probabilities are being modeled), the logit is the loga-
rithm of odds. Alternatively, for a response variabley where 0≤ y≤ 1 , one could
use aprobit link:

probit(µ) = Φ−1(µ), (2.16)

whereΦ is the cumulative distribution function of the standard normal distribution.
Note that the normal and logistic curves in Figure 2.7 are very similar. When mod-
eling data, the choice between normal and logistic is minor in terms of model fit to
data.

In the case of particular psychometric models (e.g., Thurstone’s model model for
paired comparison and the Bradley-Terry-Luce choice model), the choice of the link
function is implied by the assumptions of the model. These models are discussed in
more detail in Chapter??.
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Fig. 2.7 Cumulative distribution functions for the standard normal, logistic (scale=.0625), and
extreme value distributions.

The extreme value or Gumbel distribution is positively skewed such thatP(y≤ y)
approaches 0 relatively quickly for smaller values ofy but increases more slowly
toward 1 for large values ofy. The corresponding link is thelog-log link and equals

ln(− ln(µ)) = η .

If P(y≤ y) approaches 0 more slowly and approaches 1 sharply, then acomplemen-
tary log-loglink could be employed:

ln(− ln(1− µ)) = η ,

where(1− µ) is the complement ofµ .
When a distribution for a response variable is from the natural exponential fam-

ily, there are special link functions known ascanonical link functions. These links
have desirable statistical properties that often make thempreferable. In particular,
with a canonical link the natural parameter equals the linear predictor (i.e.,θ = η)
and sufficient statistics exist for the parameters. Table 2.2 gives the canonical link
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function for members of the natural exponential distribution. Canonical links are
often a good initial choice for a link function; however, in some cases, the canonical
link make not be the best for the response variable. For example, in the study by
Stine-Morrow et al. (2008) the response variable is reaction time. Reaction times
are non-negative and skewed. The gamma distribution would be a good choice as a
possible distribution, but the canonical link for the gamma, the inverse (i.e., 1/µ),
yields negative predictions of reaction times whenη < 0. With reaction times, an
alternative link is the natural logarithm.

Table 2.2 Distributions in the natural exponential family covered inthis chapter or in later chap-
ters. . . .More can be added later if we want/need to.

Dispersion
Type of Range Canonical parameter Variance Probability

Distribution Notation number ofy link φ function f (y; µ ,φ)

Normal N(µ ,σ 2) real −∞ < y < ∞ Identity σ 2 σ 2 (2.1)

Gamma Gamma(µ ,φ) real 0< y Inverse φ µ2φ (2.2)

Inverse Gaussian IGauss(µ ,φ) real 0< y 1/µ2 φ µ3 (2.3

Bernoulli Bernoulli(π) binary 0,1 Logit 1 µ(1−µ) (2.6)

Binomial Binomial(π ,n) integer 0,1, . . .n Logit 1/n nµ(1−µ) (2.8)

Poisson Poisson(µ) integer 0,1, . . . Log 1 µ (2.10)

The ultimate decision on what link should be chosen depends on the nature of
the response variable, theoretical considerations, and how well a model fits the data.

2.3 Examples of GLMs

In this section, we illustrate the formation of GLMs for a normal response variable,
a positively skewed continuous variable, a binary response, and a count response.
These examples are also used to illustrate assessing model goodness-of-fit to data
and statistical inferential procedures common to GLMs. Themodeling of data in this
section is only a starting point. Each of the data sets has a clustered structure (e.g.,
responses nested within subjects, students nested within peer groups or classrooms).
The clustered nature of the data is completely ignored and the conclusions presented
here should not be taken seriously. In later chapters, we re-analyze each of these
data sets using random effects to deal with the clustering and we reach different
conclusions compared to those presented in this chapter.



20 2 Generalized Linear Models

2.3.1 A Normal Continuous Variable

The data for this example comeN = 358 children in a study by Rodkin, Wilson
& Ahn (2007) on social integration in classrooms. The response variable is a mea-
sure of a child’s level of segregation with respect to mutualfriendships within their
classroom. Assuming normality of this measure is reasonable because the values of
the response variable are (theoretically) continuous realnumber and the distribution
within classrooms is likely to be uni-model and roughly symmetric.

Potential predictor variables are gender, the child’s ethnicity and the racial dis-
tribution in the classroom. The predictor variable gender is dummy coded (i.e.,
male = 1 for boys and 0 for girls), and ethnicity is effect coded with−1 for Eu-
ropean American and 1 for African American students. For theracial distribution
variable, classrooms were categorized as having either a majority of students who
were white, a majority who were black, or no clear majority (i.e., multicultural). Two
coded orthogonal variables were used to represent the classroom racial distribution
in the regression model. One code is for classroom majority whereCMmaj = 1 if
the majority of the students in the classroom are black,CMaj = −1 if the major-
ity are white, andCMaj = 0 if there is no majority. The other code for classroom
racial distribution is whether the classroom is multicultural whereMultC= 1 for a
multicultural classroom andMultC= −0.5 for either of the other classrooms.

The normal linear regression model for these data would typically be written as

segregationi = β0 + β1(malei)+ β2(ethnicityi)+ β3(CMaji)

+β4(MultCi)+ β5(ethnicityi)(CMaji)

+β6(ethnicityi)(MultCi)+ ε i ,

whereε i ∼N(0,σ2) andxxxi = (1,(malei),(ethnicityi), . . . ,(ethnicityi)(MultCi))
′.

The equivalent model written as a GLM is

Random: segregationi |xxxi ∼ N(µi ,σ2)
Link: µi = ηi

Linear predictor: ηi = βββ ′xxxi

whereβββ = (β0,β1, . . . ,β6)
′. The GLM form emphasizes the fact we are modeling

the mean conditional on predictor variables. It further emphasizes that three deci-
sions are made. If the model does not fit the data well, then thenormal distribution
may be a poor representation of the distribution of the response, the identity may
not the best link function, the linear predictor may not include all relevant variables
(or transformations of them), or some combination of these three.

The estimated parameter are reported in Table 2.3. Notice that the parameters for
child’s ethnicity, the interaction between ethnicity and classroom majority (CMaj),
and the interaction between ethnicity and multicultural (MultC) are all significant.
These results are not trustworthy because observations within classrooms dependent
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Table 2.3 Estimated parameters from a normal linear multiple regression model fit to the social
segregation data from Rodkin et al. (2007).

95% Confidence
Standard t intervals

Parameter df Estimate Error (d f = 295) p Lower Upper
Intercept 1 0.26 0.05 5.62 < .01 0.17 0.36
male 1 −0.06 0.07 −0.81 .42 −0.19 0.08
ethnicity 1 0.22 0.04 6.11 < .01 0.15 0.30
CMaj 1 −0.05 0.04 −1.39 .16 −0.13 0.02
ethnicity*CMaj 1 −0.11 0.04 −2.84 < .01 −0.18 −0.03
MultC 1 −0.07 0.06 −1.25 .21 −0.19 0.04
ethnicity*MultC 1 0.13 0.06 2.24 .03 0.02 0.25

and thus violate of the independence assumption required for statistical inference6.
The observations within classrooms are most likely positively correlated; therefore,
the standard error estimates are too small leading to the test statistics for parameters
whose absolute values are too large. In other words, Type I error rates are inflated.
We return to this example in Chapter??.

2.3.2 A Skewed Continuous Response Variable

The data for this example consists of a sub-set of data fromN = 149 elderly subjects
in a study on cognition and aging from Stine-Morrow and colleagues. The proce-
dures and data are similar to those reported in Stine-Morrowet al. (2008). Elderly
individuals were presented with words on a computer monitor. The words were pre-
sented one at a time and a sequence of words made up a sentence.Each subject
read multiple sentences and sentences could wrap over lineson the screen. A word
would be presented and the subject would hit the space bar when they were ready
of the next word. Of interest in this study is reading time measured in ml seconds
between word presentation and the hitting of space bar. The reaction times are con-
tinuous and positively skewed as can be seen from the histogram of reaction times
in Figure 2.8.

Given the nature of the response variable, two plausible distributions for these
data are the gamma and inverse Gaussian distributions. Bothof these distributions
are positively skewed for non-negative continuous responses. Which distribution
is better for the data may depend more on the relationship between the mean and
variance and best determined empirically.

Predictor variables include textual variables and attributes of the subjects. The
textual variables are the number of syllables in the word (syll), logarithm of the

6 In normal linear regression of clustered data (where the dependencies within cluster are ignored),
the estimatedβs are actually reasonability good (consistent) estimates of the effects (–reference–).
This is not true for all GLMs.
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Fig. 2.8 Histogram of the observed distribution of time taken by elderly participants to read a word
and fitted values from a gamma regression the canonical link,the inverse.

word frequency (logFreq), inter-sentence boundary (intSB), and whether a new
line is started (newLine). Subject attributes of interest are age, score on the North
American Adult reading test (NAART), and measures of cognitive executive func-
tioning. The latter includes overall mean response accuracy (meanAcc), response
time for trials using the same task (SwRTsame), and task switching response time
cost (SWRTcost). The structural part of the model will be a linear function of these
textual and subject variables.

The last component of the model is a link function. The canonical link for the
gamma is the inverse that in the context of reaction times is interpretable as the speed
to read a word. The canonical link for the inverse Gaussian is1/µ2. In addition to
the default link functions, the log link will also be considered because response
times must be positive.

The family of GLMs that we fit to the reaction time data is

y
i
∼ f (y;µi ,φ) (2.17)

g(µi) = ηi (2.18)
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ηi = βββ ′xxxi (2.19)

wherexxxi is a vector of values of the predictor variables,βββ is a vector of regression
coefficients,f (y;µi ,φ) is either the gamma or the inverse Gaussian distribution. The
links considered are 1/µ , 1/µ2, and ln(µ). For example, a gamma regression using
the inverse link is

(1/µi) = ηi = β0 + β1 (sylli)+ β2 (logFreqi)+ β3 (intSBi)+ β4 (newLinei)

+β5 (agei)+ β5 (NAARTi)+ β6 (meanAcci)+ β6(SwRTsamei)

+β7 (SWRTcosti).

Additionally, reaction timerti ∼ Gamma(µi ,φ), and the mean reaction time for
responsei is µi = E(rti |(sylli),(logFreqi), . . . ,(SWRTcosti)) = 1/ηi.

Before fitting models to data, we deleted outliers with reaction times greater than
4,000 ml seconds, approximately 1% of the totalN = 64,368 responses. Regard-
less of the distribution, models with link 1/µ2 failed to converge and this link was
deemed a poor choice. The predicted reaction times from the other four models
are nearly identical. The correlations between the predictions with the same link
function but different distributions equal.999 for the ln(µ) and 1/µ links. The cor-
relations between predictions with different links with the same distribution equal
to .989 for the gamma distribution and.986 for the inverse Gaussian.

Since the predicted values from the four models are so similar, only the fitted
values from the gamma regression with the inverse link are plotted in Figure 2.8.
The fitted values are represented by the dots connected by a solid line. The models
over-predict the number of reactions times near 500 ml seconds by over 15,000,
and under-predicts the reaction times greater than 500 ml seconds. In this data set,
there areN = 149 subjects each of who contribute reaction times for each of the
432 different words in the experiment. A model that takes into account random
individual differences could improve the fit of the model to the data, as well as
account for dependencies due to the nesting of observationswithin individuals.

All of the effects in the models are significant (except one inthe inverse Gaussian
model with the log link). Since we did not take into account the dependency in the
data, the estimated parameters and standard errors are not reported here. We revisit
this example in Chapter??.

2.3.3 A Dichotomous Response Variable

The data for this example come from a study of by Rodkin et al. (2006) on the
social status of children among their peers. The data consist of measures onN = 526
fourth and fifth grade students. As an index of social status,children were asked they
think is “cool.” For this example, the response variableideali equals the number of
kids classified as a model or ideal student (i.e., popular or prosocial) among those
who were nominated as being “cool.” Since the response is dichotomous (cool-kid
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is an ideal student or not), the binomial distribution is thenatural choice as the
distribution of the response and we model the probability that an ideal student is
nominated as being cool. The predictor or explanatory variables are the nominating
child’s popularity, gender and race. Each of the predictorsare dummy coded as
follows:

popularityi =

{
1 high
0 low

, genderi =

{
1 boy
0 girl

, and racei =

{
1 black
0 white

.

The indexi is used to represent a particular case or combination of the predictor
variables (e.g., white girl who is popular is one combination),ni equals the number
of students nominated as “cool” by peers who had combinationi on the predictor
variables, andπi equals the probability that a student nominates an ideal student as
being cool. The cool-kid data are given in Table 2.4.

Our basic GLM for the cool–kid data is

ideali ∼ Binomial(πi ,ni)

g(πi) = ηi

ηi = β0 + β1Popularityi + β2Genderi + β3Racei ,

Three different link functions are illustrated: the identity (i.e., πi = ηi), the logit
(i.e., ln(πi/(1− πi) = ηi), and the probit (i.e.,Φ−1(πi) = ηi). Putting the three
components together leads to three different models. In allmodels,incorrecti
is binomially distributed. The linear probability model is

πi = β0 + β1Popularityi + β2Genderi + β3Racei ,

the logit model is

ln

(
πi

1−πi

)
= β0 + β1Popularityi + β2Genderi + β3Racei ,

and the probit model is

Φ−1(πi) = β0 + β1Popularityi + β2Genderi + β3Racei .

The fitted valueŝπi for each of these three models are reported in Table 2.4.
Given thatπi is the probability the student nominated by one child with explana-

tory variables equal toPopularityi , Genderi , andRacei is an ideal student,
the number of ideal students nominated equalsideali = niπi . However, the data
given in Table 2.4 is collapsed over individuals with the same pattern on the pre-
dictor variables. These models can be fit to individual leveldata (i.e.,y = 0,1 and
ni = 1) or to collapsed collapsed data (as in Table 2.4). Both wayslead to the same
estimated probabilities and counts. More on this issue is discussed in Chapter??.
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Table 2.4 Data of students nominated as “cool” who are model students and predictions from linear probability, probit and logit models.

Number of Number of non- Number Proportion of Predicted Probabilities Std. residuals 95% confidence
Index Nominating child’s ideal students ideal students of cases ideal students π̂i from Logit model bands for logitπi

i popularity gender race who are “cool” who are “cool” ni pi Linear Probit Logit Pearson Adjusted lower upper
1 low girl white 70 65 135 .52 .53 .53 .54 −0.38 −0.65 .47 .60
2 low girl black 32 114 146 .22 .22 .21 .21 0.19 0.30 .17 .27
3 low boy white 47 61 108 .43 .44 .42 .41 0.44 0.70 .34 .49
4 low boy black 13 85 98 .13 .12 .14 .14 −0.28 −0.36 .10 .19
5 high girl white 80 28 108 .74 .71 .71 .72 0.57 0.86 .65 .78
6 high girl black 15 29 44 .34 .39 .38 .37 −0.43 −0.53 .29 .46
7 high boy white 46 34 80 .58 .61 .61 .61 −0.61 −0.88 .53 .68
8 high boy black 11 25 36 .31 .29 .27 .27 0.52 0.62 .20 .35
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The model with the identity link (i.e.,πi = ηi) is known as thelinear proba-
bility model. This differs from normal linear regression in that the distribution for
the response variable is the binomial distribution and not the normal distribution.
The estimated probabilities of the linear probability model are given in Table 2.4.
Although all of the estimated probabilities of this model were positive, this will
not always be the case. Sometimes this model yields negativefitted value for the
probabilities.

The estimated probabilities for the logit and probit modelsare nearly identical
and are very similar to those from the linear probability model. To show how similar
the predictions are, as well as given an ideal of how well the models are fitting
the data, the estimated probabilities from the three modelsare plotted against the
observed proportions in Figure 2.9. Note that perfect prediction corresponds to the
solid line identity line. The predicted probabilities for the three models are basically
on top of each other and all very close the observed values.

In Sections 2.5, more formal methods are presented for assessing whether the
models provide a good representation of the data and for choosing among a set of
plausible models. One advantage of the logit model is that the logit is the canoni-
cal link function for the binomial distribution and the interpretation of the models
parameters is relatively straight forward. Furthermore, when the canonical link for
the binomial distribution is used, the logistic regressionmodel is special case of a
Poisson regression. We exploit this relationship in Chapter??.

The estimated parameters and fit statistics for the linear, logit and probit models
are reported in Table 2.5. A brief explanation is given here on how to interpret the
parameters of a logit model and save more detailed discussion for Chapter??. To
make this discussion more general, letx1i representPopularityi andx2i represent
Genderi andx3i representRacei . To emphasize thatπi is a function of thexis, the
probability is written as a function of them (e.g.,πi(x1i ,x2i ,x3i)). The logarithm of
the odds equals

ln

(
πi(x1i ,x2i ,x3i)

1−πi(x1i ,x2i ,x3i)

)
= ηi = β0 + β1x1i + β2x2i + β3x3i . (2.20)

Theβs are most naturally interpreted in terms of odds ratios. Taking the inverse of
the logarithm of (2.20) (i.e, the exponential) yields the odds that a cool-kid is an
ideal students,

π(x1i,x2i ,x3i)

1−πi(x1i ,x2i ,x3i)
= exp[β0 + β1x1i + β2x2i + β3x3i]. (2.21)

If x1i is one unit larger butx2i andx3i remain the same, the odds equals

π(x1i +1),x2i,x3i)

1−π((x1i +1),x2i,x3i)
= exp[β0 + β1(x1i +1)+ β2x2i + β3x3i]. (2.22)
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Fig. 2.9 Predicted probabilities from the logit, probit and linear probability model fit to the cool-
kid data plotted against the observed proportions.

The ratio of the two odds above is an odds ratio. In our case, dividing the odds in
(2.22) by the odds in (2.21) equals exp(β1). This interpretation does not depend of
the specific value for gender or race.

For the cool–kid example, the estimated parameters for the logit (and probit)
model are reported in Table 2.5. Using the estimated parameters from the logit
model, the estimated odds that a highly popular child nominates an ideal student as
cool are exp(0.7856)= 2.19 times larger than the odds for child with low popularity.
The odds that a boy nominates an ideal student are exp(−.4859)= 0.62 times larger
than the odds for a girl, and the odds for a white student are exp(−1.4492) = 0.23
times the odds for a black student. Since the value of the predictor in the numerator
of the odds is somewhat arbitrary, we can switch the roles of gender and race and say
that the odds that a girl nominates an ideal student are exp(.4859) = 1/0.62= 1.63
times the odds for a boy, and the odds for a white student are exp(1.4492) =
1/0.23= 4.26 times the odds for a black student. It is more likely that girls, whites
and highly popular students will nominate a model or ideal student as being cool.
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Table 2.5 Model goodness-of-fit statistics and parameter estimates of the probit and logit models
fit to the model cool kid data (Rodkin et al. 2006).

Probit Model Logit Model
Effect estimate s.e. Wald p estimate s.e. Wald p
Intercept 0.0875 0.0875 1.04 .31 0.1403 0.1397 1.01 0.32
Popularity:

High 0.4804 0.1013 22.48 < .01 0.7856 0.1667 22.22 < .01
Low 0.0000 0.0000 — — 0.0000 0.0000 — —

Gender:
Boy −0.2955 0.0987 8.97 < .01 −0.4859 0.1640 8.77 0.01
Girl 0.0000 0.0000 — — 0.0000 0.0000 — —

Race:
Black −0.8817 0.1011 76.13 < .01 −1.4492 0.1701 72.55 < .01
White 0.0000 0.0000 — — 0.0000 0.0000 — —

d f 4 4
Deviance(p-value) 1.4944 (.83) 1.5955 (.81)
X2 (p-value) 1.4933 (.83) 1.5982 (.81)
ln(likelihood) −450.0575 −450.1081

The students providing the nominations (i.e., the responses) in the cool–kid ex-
ample are nested within peer groups and peer groups are further nested within class-
rooms. This nesting leads to responses from students that are highly positively corre-
lated andβ̂s and estimated standard errors are biased. The estimated standard errors
are too small, which in turn leads to test statistics for the parameters that are too
large. In other words, the Type I error rates of statistical tests inflated. These data
are re-analyzed in the next chapter using more appropriate methods; however, we
continue to use the cook kid–data in this chapter to illustrate GLM methodology.

2.3.4 A Count Response Variable

The data from this example are from a study by Espelage et al. (2004) on the effects
of aggression during early adolescence. The response variable, the extent to which
a child is a bully, has been measured in two different ways. One method takes the
average of responses to nine items from the Illinois Bully Scale (Espelage & Holt,
2001), and the other method uses the number of children who list another as being
a bully. Bully nominations are viewed as a more objective measure than scores the
Illinois Bully Scale (a self report measure). In this analysis, we will model bully
nominations as the response variable with the bully scale scores as an explanatory
or predictor variable.

The distribution of the peer nominations is given in Figure 2.10. Note that the
distribution is very skewed and responses are non-negativeintegers. Since the re-
sponse variable is a count, our initial choice of a distribution is the Poisson with
its canonical link, the natural logarithm ln. The bully scale is the predictor variable
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Fig. 2.10 Observed distribution and fitted values from two Poisson regression regression models.
Model 1 only includes the bully scale as a predictor variableand Model 2 includes bully scale,
gender, age and empathy.

included in the systematic component. Our GLM model for these data is

bullynomi ∼ Poisson(µi)

ln(µi) = ηi

ηi = β0 + β1(bullyscale)i

The parameter estimates and fit statistics are reported in Table 2.6. The fitted model
equals

ln( ̂bullynomi) = −0.6557+0.8124(bullyscale)i ,

or using the inverse of ln that gives the predicted counts,

̂bullynomi = exp[−0.6557+0.8124(bullyscale)i .]

Interpretation of the regression coefficients in a Poisson regression model is sim-
ilar to that for normal linear regression in that we considera one unit difference of
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an explanatory variable and the corresponding difference between the predicted (fit-
ted) expected values of the response variable (i.e., the estimated means); however,
the effect of a predictor on the mean response is multiplicative rather than additive.
Specifically, the Poisson regression model when a predictorhas a value ofxi is

µi,xi = exp[β0 + β1(xi)] = eβ0eβ1xi , (2.23)

and the model when a predictor is one unit larger is

µi,(xi+1) = exp[β0 + β1(xi +1)] = eβ0eβ1xi eβ1. (2.24)

The expected mean countµi,(xi+1) is exp(β1) times the meanµi,xi ; that is, the
predicted mean given(xi + 1) is exp(β1) times the mean givenxi . In our exam-
ple, for a one point larger on the bully scale, the mean numberof nominations is
exp(0.8124) = 2.5 times larger.

Table 2.6 Estimated parameters and fit statistics for simple and more complex Poisson regression
models fit the peer nomination data.

Model 1 Model 2
Parameter Est. SE exp(β ) Wald p Est. SE exp(β ) Wald p
Intercept −0.6557 0.0888 54.52 < .01 −4.2457 0.6128 48.00 < .01
Bully scale 0.8124 0.0351 2.25 536.72 < .01 0.7812 0.0543 2.18 206.74 < .01
Gender (female) −0.3278 0.0942 0.72 12.12 < .01
Gender (male) 0.0000 0.0000 . .
Empathy 0.1331 0.0515 1.14 6.68 = .01
Age 0.2574 0.0492 1.29 27.33 < .01
Fight scale 0.1533 0.0447 1.17 11.74 < .01
d f 287 283
Deviance 1771.65 1701.92
PearsonX2 2968.56 2875.18
ln(Likelihood) 153.30 188.17

The simple Poisson regression model fails to give a good representation of the
data as can be seen in Figure 2.10 where the dashed line shows the model predicted
probabilities computed using the fitted mean counts7. The model under-predicts the
number of observations with 5 or fewer nominations. The model may be failing
to fit for a number of reasons. Recall that for the Poisson distribution, µ = σ2.
Overdispersion occurs whenµ < σ2 and this is found in the bully data. Means and
variances of the number of nominations for ranges of the bully scale are reported in
Table 2.7. The means increase as bully scores increase (as expected), but the vari-
ances are much larger than the means. When data are over-dispersed, the standard
errors for parameter estimates are too small, which in turn leads to test statistics for
coefficients that are too large (i.e., higher Type I error rates).

7 The predicted probabilities were computed usingπ̂i = µ̂i/N whereµ̂i is the fitted mean count for
observationi andN is the total sample size.
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Table 2.7 The means and variances of peer nominations for ranges of thebully scale scores.

Bully score Mean Variance
0–0.9 1.42 12.70
1–1.9 4.86 84.49
2–2.9 7.20 179.03
3–4.0 12.20 301.70

Overdispersion can be caused by lacking necessary predictor variables, having
correlated observations due to nesting or clustering of observations, or the wrong
distribution for the data. All observations with the same value of the predictor vari-
able are assumed to be independent values from the same Poisson distribution. This
assumption is known as thehomogeneityassumption. We may be able to overcome
heterogeneity by adding predictor variables when the needed additional variables
are available.

The variables gender, age, empathy (perspective taking sub-scale of the Davis
(–reference–) measure of empathy), and scores on a fighting scale were all added to
the model. The results of the second model are given in Table 2.6 under “Model 2”.
Although Model 2 fits better than Model 1, it still fails to adequately represent the
data. The solid line in Figure 2.10 shows that Model 2 still fails to capture the low
end of the distribution.

Another potential problem with this analysis that could lead to overdispersion
is dependence of observations. Students are nested or clustered within peer groups.
This analysis has not taken this potential dependency into account. If there is depen-
dency in the data, the standard errors will be too small and statistical tests will have
higher Type I error rates. The statistical tests for the regression coefficients in this
example are not to be trusted. When assessing and detecting problems with GLMs,
we must consider our decisions regarding the distribution,systematic component
and link function. We return to this example in Chapter??where we consider ways
of including dependence (i.e., random effects), and exploring alternative distribu-
tions for the data.

2.4 Estimation

When using GLMs, having a basic understanding of how parameters are estimated
can help detect problems and point to potential solutions. An overview of estimation
is provided here and a more technical coverage is given in Section ??.

Maximum likelihood estimation (MLE) is typically used to estimate the param-
eters of GLMs. Maximum likelihood estimates are those that are most likely given
the data. This is achieved by considering the probability density as a function of
the parameters rather than as a function of data. Given data and a probability model
(i.e., random component of a GLM), those parameters that yield a maximum value
of the function are maximum likelihood estimates. For example, consider the distri-
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Fig. 2.11 The likelihood (top) and ln likelihood (bottom) for the Poisson distribution wheny = 2
(left) andy = 1,4,4 (right) plotted as a function of possible values for the mean µ .

bution function for the Poisson distribution in equation (2.10) and the simple case
of a single observationy. The likelihood function for the Poisson is

L(µ ;y) =
e−µ µy

y!
. (2.25)

Equations (2.10) and (2.25) are the same except the role ofµ and y have been
switched such thaty is fixed andµ can vary in (2.25). For example, the likelihood
given by (2.25) is plotted fory = 2 in Figure 2.11 (a). Notice that the maximum
value ofL(µ |2) occurs areµ = 2.

Suppose that we have a sample ofN independent observationsy1, . . . ,yN from
Poisson(µ). The likelihood function for the whole sample is the productof the in-
dividual likelihoods,

L(µ |y1, . . . ,yN) =
N

∏
i=1

e−µ µyi

yi !
. (2.26)
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This is basically an application of the multiplicative rulein probability where the
probability of independent events equals the produce of theprobabilities for each of
the events. An example of this likelihood function is plotted in Figure 2.11 (b). The
maximum of the likelihood occurs atµ = 3.33, the mean of 2, 4 and 4.

To estimate the parameters of a GLM, we specify a model forµ conditional
on predictor or explanatory variables. This model isµi = g−1(βββ ′xxxi). The process
and concepts are the same except that we replaceµi by its modelg−1(βββ ′xxxi) in the
likelihood function. The likelihood function is then a function of the regression co-
efficientsβββ . Once the MLE ofβββ has been estimated (i.e.,β̂ββ ), the MLE ofµi equals

µ̂i = g−1(β̂ββ
′
xxxi).

Typically, estimation procedures use the ln of the likelihood because it is easier
to work with. Examples of the ln(L(µ ;y)) for the Poisson distribution are given in
Figures 2.11 (c) and (d). The maximum of the ln likelihood function occurs at the
same value of the parameters as it does for the likelihood function.

Except for special cases of the general linear models (i.e.,normal linear regres-
sion and ANOVA), MLE of parameters requires an iterative algorithm. Common
algorithms for finding maximum likelihood estimates are theNewton-Raphson and
Fisher scoring. These are iterative algorithms used to solve nonlinear equations. The
algorithms start with an initial set of parameter estimatesand up-dates the estimates
on each iteration by solving a simple approximate problem. The up-dating is re-
peated until the algorithm converges and a maximum of the likelihood has been
achieved. The parameter up-dating equations for Newton-Raphson and Fisher scor-
ing equal current parameter estimates minus the product of the inverse of theHes-
sian matrixand thescore vector.

The score vector8 corresponds to the slope of the ln likelihood. The is one ele-
ment in the score vector of each parameter to be estimated. When the maximum of
the likelihood is achieved, the elements of the score vector(slopes) all equal zero.
This is illustrated in our simple example in Figure 2.11 (c).Whenµ = 2, the slope is
flat, equal to 0. The Hessian matrix9 conveys information about the rate of change of
the likelihood. When a parameter estimate is far from the MLE, the rate of change
will be larger. In our simple example, note that whenµ = 0 in Figure 2.11 (c), the
rate of change is larger than it is whenµ is closer to the MLE atµ = 2.

The difference between Fisher scoring and Newton-Raphson is how the Hessian
matrix is computed. The Newton-Raphson method computes theHessian using data;
whereas, Fisher scoring uses the expected value of the Hessian and equals the neg-
ative of Fisher’s information matrix. Different algorithms for finding MLEs should
all yield the same results.

Common problems to look for are lack of convergence, fitted values outside the
permitted range (e.g., counts that are negative), and a singular or nearly singular
Hessian matrix (i.e., there is no unique inverse of the Hessian). Problems are gener-
ally caused by the wrong model for the data. Estimation problems can generally be
solved by modifying the model. For example, a linear probability model will yield

8 The score vector or gradient is the vector of first partial derivatives of the ln likelihood function.
9 The Hessian matrix is a matrix of second partial derivatives.
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negative estimated probabilities wheneverηi < 0 and probabilities greater than one
wheneverηi > 1. In such cases, the estimation algorithm may fail to converge. A
reasonable solution in such a case would be to use a differentlink function that
would ensure that probabilities are within the permitted range of 0 to 1 (e.g., probit,
logit).

If a model has too many predictor variables or the predictorsare highly corre-
lated, the Hessian may be singular (or nearly so). This indicates an unstable solution.
Most computer programs will issue a warning or error message. The problem of a
singular Hessian can be detected by the presence of outrageously large estimated
standard errors. For example, in the cool–kid data, the popularity of a nominator is
actually measured on a continuous scale that was dichotomized solely for the pur-
pose of illustration of modeling and modeling concepts. Popularity is best entered
as a numerical predictor; however, if popularity with 70 different values was entered
into the model as a categorical predictor variable , the estimation fails. The Hessian
is not singular (i.e., not “positive definite”). The estimated standard errors for many
of the levels of popularity are 71,098.7 or 118,499.2; whereas, the standard errors
for gender and race equal 0.35 and 0.19, respectively.

Multicolinearity can lead to the Hessian being nearly singular. This causes a
problem for estimation because the estimation algorithms must take the inverse of
the Hessian and there is no unique inverse for a singular matrix. In such cases,
Fisher scoring will tend to perform better than Newton-Raphson since the expected
value of the Hessian is used. Alternatively, a variation of Newton-Raphson, “ridge
stabilized” Newton-Raphson, might also work10. Perhaps the best thing to do is to
fix the source of the problem by modifying the model.

2.5 Assessing Model Goodness-of-Fit to Data

When making statistical inferences about populations, thedata and the model are
taken as given; however, uncertainty exists in the model specification itself (Burn-
ham & Anderson 2002). Valid inference depends on using a model that is a good
representation of data; therefore, choosing a model (or sub-set of models) should
precede interpretation of parameter estimates.

Assessing model goodness-of-fit to data should never be based on a single statis-
tic or statistical test. Evaluating model fit is best thoughtof as a process of gathering
evidence for and against a model or a sub-set of plausible models. Three aspects that
we consider here are examining global measures of goodness-of-fit to data, compar-
ing competing models within a set of plausible models, and assessing local lack of
fit.

General methods commonly used for assessing fit are described below. Other
methods have been developed for particular types of models.The model specific
methods are described in subsequent chapters in the contextof particular models.

10 Basically in a ridge stabilized regression, positive values are added to the diagonal of the Hessian
to help keep it from being singular (–reference–).
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2.5.1 Global Measures of Fit

Global measures of fit compare observed values of the response variable with fitted
or predicted values. Two common measures are deviance (D) and the generalized
PearsonX2 statistic. Most computer programs for GLMs output values ofbothX2

andD.
Deviance is a global fit statistic that also compares observed and model fitted

values; however, the exact function used depends on the likelihood function of the
random component of the model. Deviance compares the maximum value of the
likelihood function for a model, sayM1, and the maximum possible value of the
likelihood function computing using the data. When the dataare used in the likeli-
hood function, the modelMy is saturated and has as many parameters as data points.
The modelMy fits the data perfectly and gives the largest value possible for the
likelihood. Deviance equals

D = −2[ln(L(M1))− ln(L(My))], (2.27)

whereL(M1) andL(My) equal values of the likelihood function for modelsM1 and
My (the data), respectively. If modelM1 fits the data perfectly, the two values of the
likelihood will be equal and Dev= 0. In practice where the modelM1 is a summary
of the information or structure in the data, the likelihood for M1 will be smaller than
the likelihood using the observed data (i.e.,L(M1) < L(My)) andD > 0.

Another common global measure of fit is a generalized Pearson’s X2 statistic,

X2 = ∑
i

(µi − µ̂i)
2

√
var(µ̂i)

. (2.28)

The greater the difference between observed and fitted values relative the the vari-
ance of the fitted values, the larger the value ofX2.

Both X2 andD can always be used as indices of fit. When data are normally
distributed (i.e., the random component of the GLM is normal), then the sampling
distribution ofX2 andD are chi-square (McCullagh & Nelder 1989). For other dis-
tributions, the sampling distributions ofX2 andD are approximately chi-square for
“large” samples. In these cases, model goodness-of-fit can be assessed statistically.

For the large sample or asymptotic results to apply there must be a large num-
ber of individuals who have the same values on the variables in the model. How
large is “large enough”? Consider the data as a cross-classification of variables in-
cluding both discrete and/or essentially continuous variables. If there are 5 or more
observations per cell (or for most cells), then the samplingdistributions ofX2 andD
may be approximately chi-squared. This condition is easierto meet when all vari-
ables are discrete, but runs into problems when variables are (nearly) continuous.
For example, in the cool–kid example, the cross-classification of type of kid (ideal
or not) by popularity by gender by race has 2×2×2×2= 16 cells and the size of
this table does not increase when additional subjects are added to the study. Adding
more subjects to the study increases the number of observations per cell. If popu-
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larity was treated a numeric or continuous variable, the size of the table would have
been 2×70×2×2= 560 cells and would need a larger sample to have at least five
observations per cell (there are onlyN = 526 students in the study). Furthermore,
adding an additional subject would likely increase the sizeof the table because the
new observation may have a different value on the popularitymeasure.

When the sampling distribution ofX2 andD are approximately chi-square, the
degrees of freedom equal the number of observations minus the number of unique
parameters; that is,

d f = number of observations−number of unique parameters. (2.29)

In our cool–kid example, since there are 8 possible logits and 4 estimated param-
eters, the model degrees of freedom equald f = 8−4 = 4. Since the smallest cell
count is 11, the sampling distribution of Person’sX2 and deviance are likely to be
well approximated by a chi-square distribution. The deviance and Pearson’sX2 for
the probit model havep-values both equal.83, and those for the logit model both
equal.81. These models seem to fit the data particularly well; however, nesting has
been ignored. These statistical tests are misleading.

A further consideration when examining the fit of a model statistically is that
when the sample is very large and the global fits statisticsX2 andD have (approx-
imate) chi-square sampling distributions, the lack of model fit to data may be sig-
nificant even when the model is a good representation of the data. The values ofX2

andD depend on sample size. This is related to the issue of practice versus statis-
tical significant. Model selection should not depend on a single statistic or without
regard to the problem as a whole.

2.5.2 Comparing Models

A researcher may be faced with selecting a “best” model from among a set of plau-
sible and competing models. GLMs may differ in terms of the variables included
in the linear predictor, the link function, or the random component. For example,
should the probit or logit link be used for the psycholinguistics data? Should we use
a gamma or inverse Gaussian distribution for the reaction time data and which link
function should be used? For the peer nominations of bulliesexample, do we only
need the bully scores as a predictor or should we include the additional predictor
variables?

One aspect of the choice among models is based on substantivetheory and the
goal of an analysis. If one posits an underlying model that implies a probit model,
then the probit should be selected. Psychological models that imply models for data
are discussed in Chapters?? and— maybe some other chapters —. For the bully
dataset, if a researcher wishes to use a self report bully scale rather than the peer
nominations, the models in a set should include the bully scores as predictor of the
peer nominations
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Other aspects of model selection take into consideration model goodness-of-fit
to data and parsimony. There is a trade off between model goodness-of-fit to data
and models that summarize the essential structure in the data. Models that are either
too simple or too complex are not useful. A model that is too simple may not be a
good representation of the information in the data and a model that is too complex
does not provide enough of a summary of the information in thedata to be useful.
Although not desirable as a final model, the complex model provides a baseline
against which to compare simpler models.

How models can be compared depends on whether the models are nested or non-
nested. Nested models are special cases of more complex models. For example,
Model 1 for the bully data that only includes the bully scale score is a special case
of Model 2 that includes the bully scale score and four other predictor variables. In
Model 1, the parameter estimates for the other four were implicitly set to 0. An ex-
ample of non-nested models are the probit and logit models for the psycholinguistics
data.

Likelihood ratio tests can be used to determine whether the fit of the model to
data is statistically different between two models where one model is nested within
the other. Information criteria, weigh both goodness-of-fit of the model to data and
model complexity. Information criteria can be used to compare nested or non-nested
models. In this section, likelihood ratio tests are discussed followed by information
criteria.

Likelihood Ratio Tests

Likelihood ratio tests are most often used to compare modelswith with different
linear predictors because they require one model to be a special case of another. In a
few cases, they can be used to compare models with different distributions, but this
is more the exception than the rule. Later in Chapter(s)??and?? examples will be
given for this latter situation.

When one model is a special case of a more complex or “full” model, likelihood
ratio tests can be used to assess whether the difference in model fit to data is statisti-
cally large. The likelihood ratio test is a conditional testin that given the full model
fits the data, it tests whether the nested (simpler) model also fits the data. LetMo

represent the null or nest model that has restrictions placed on its parameters and
M1 represent the full model. The likelihood ratio statistic equals

LR= −2[ln(L(M0))− ln(L(M1))], (2.30)

whereL(Mo) and L(M1) are maximum values of the likelihood function for the
nested and full models.

To provide further insight into theLR test, the likelihood ratio test statistic can
also be found by taking the differences between the two models’ deviances, because

LR = −2[ln(L(M0))− ln(L(My))]︸ ︷︷ ︸
D(M0)

−(−2[ln(L(M1))− ln(L(My))])︸ ︷︷ ︸
D(M1)
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= −2[ln(L(M0))− ln(L(M1)].

Although the distributions of the global fit statistics may not be chi-square, the dif-
ference between them may be approximated by a chi-square distribution where the
degrees of freedom equal the difference between the number of parameters in each
model (i.e., the number of restrictions placed on the parameters ofM1 to achieve
M0).

As an example, consider the two models fit to the bully nomination data that are
labeled as Model 1 (only bully scores as a predictor) and Model 2 (bully scores,
gender, empathy, age, and score on a fight scale are all used aspredictors). Model
1 is nested within Model 2 andLR= 1771.65−1701.92= 69.73 with ν = 287−
283= 4. Comparing 69.73 to a chi-square distribution withν = 4 givesp< .01 that
can be taken as evidence in favor of the more complex model, Model 2.

Information Criteria

Information criteria can compare nested and non-nested models. The models can
different with respect to their linear predictors, link functions and distributions of
the response variables. The two that are given here are Akaike’s information crite-
ria (AIC) and the Baysian information criteria (BIC). These measures consider the
distance between a “true” model and a model fit to the data. They try to balance
goodness-of-model fit to data and model complexity.

TheAIC equals
AIC = −2ln(L(M1))+2Q, (2.31)

and theBIC equals
BIC = −2ln(L(M1))+Qln(N), (2.32)

whereQ equals the number of parameters of a model andN the sample size. The
smaller the value the better the model. Heuristically thesemeasures can be thought
of as penalizing a model based on their complexity; however,there is a theoreti-
cal basis for the penalties. The thorough discussion of these and other information
criteria can be found in Burnham & Anderson (2002).

When models differ in terms of their linear predictors or link functions, comput-
ing AIC andBIC statistics is straightforward. For example theAIC andBIC statistics
for the two models fit to the peer nomination data were computed using the statis-
tics given in Table 2.6. For Model 1,AIC = −2(153.30)+ 2(2) = −302.60 and
BIC = −2(153.30)+ 2(2) ln(289) = −295.27, and for Model 2,AIC = −364.34
andBIC=−342.34. Comparing the twoAICs, the better model appears to be Model
2 and comparing the twoBICs, yields the same conclusion. This will not always be
the case. Different information criteria can yield different conclusions.

Some caution is warranted when usingAIC andBIC to compare models. The
same data should be fit by models that are being compared11. This becomes relevant
when some cases are excluded from a model due to missing values on some of the

11 This is also true forLR
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Table 2.8 The full ln likelihood, AIC and BIC statistics for Model 1, Model 2 and two others fit
to the peer nomination data whereN = 289.

Number of Full
Distribution Link Predictors parameters ln(like) AIC BIC
Poisson ln bullyscale 2 −1075.36 2154.72 2162.05
Poisson ln bullyscale,

gender, empathy,
age, fight

6 −1040.49 2092.98 2114.98

Poisson identitybullyscale 2 −1044.53 2093.06 2100.39
Normal identitybullyscale 3 −931.08 1866.16 1873.49

variables. Attention should also be paid to ensure that the correct orfull ln likelihood
is used to computeAIC or BIC when comparing models with different distributions.
For some distributions, the full logarithm of the likelihood has an additive constant
that only depends on the data. Regardless of the link or what is included in the linear
predictors, this additive constant is the same; therefore,some programs only use the
kernelof the likelihood (i.e., the logarithm of the likelihood without the additive
constant). As a example, consider the Poisson distribution. The full logarithm of the
likelihood is

ln(L(µ ;yyy) = ln

(
N

∏
i=1

e−µ µyi

yi !

)

=
N

∑
i=1

yi ln(µ)−Nµ −
N

∑
i=1

ln(yi !)

︸ ︷︷ ︸
constant

.

When finding theµ that maximizes the likelihood, the constant∑N
i=1 ln(yi !) can be

ignored and only the first two terms used (i.e.,∑N
i=1yi ln(µ)−Nµ) when estimating

µ .
In the bully nomination example, the ln likelihoods reported in Table 2.6 do not

include the additive constants. In this example the additive constant equals 1,228.66.
The full likelihoods, AIC and BIC for Model 1, Model 2 and two additional models
are contained in Table 2.8. In terms ofAIC andBIC, it appears that the best model is
the one with a normal distribution and identity link function. Very little if any weigh
should be placed on these results, because none of these models are acceptable. We
found that neither Model 1 nor Model 2 fit the data, there is obvious overdispersion
(making the normal distribution inappropriate), and that we have ignored the fact
that the children in this study are nest within peer groups.
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2.5.3 Local Measures of Fit

Part of determining whether a model is representative of thestructure in the data
includes examining local model miss-fit and looking for influential observations.
Models may represent most of the data well, except for a sub-set of observations,
and potential improvements to the model sometimes can be found by looking for
systematic relationships in the residuals or identifying cases with particularly large
residuals. Such observations may have too much influence in terms of goodness-of
model fit to data and/or on estimated parameters.

With respect to model fit to data, standardized residuals canbe examined. Two
common residuals are Pearson residuals and deviance residuals and these should
be normally distributed. These residuals tend to be too small (i.e., variance too
small) relative to the standard normal distribution. Thereare adjusted versions of
both of these such that if the model fits the data well, the adjusted residuals should
be distributed asN(0,1) . In our cool kid example, the Pearson and adjusted Pear-
son residuals are reported in Table 2.4. Although the adjusted Pearson residuals are
larger than the unadjusted, they are all small; that is, theyare all between−1.96 and
1.96 (the 2.75% and 97.25% percentiles of theN(0,1)).

Other measures that focus more on influential observations are based on the strat-
egy of removing an observation, re-fitting the model, and computing a statistic. The
statistics include global measures of fit (e.g.,X2, deviance), regression coefficients
(i.e., theβs)), diagonal elements of the Hessian or Hat matrix, and others. Such
statistics are computed for each observation. When the value of a computed statistic
for a case deviates from the values computed for most of the other observations, the
case may be an influential observation. Influential observations maybe outliers in
the design space and/or values that are not fit well by the model.

2.6 Statistical Inference for Model Parameters

Statistical inference for model parameters primarily includes hypothesis testing and
the formation of confidence intervals. We discuss Wald,F, and likelihood ratio tests
for parameters, as well as formation of confidence intervalsfor parameter and pre-
dicted means. Confidence intervals give a sense of the precision of estimation.

2.6.1 Hypothesis Testing

Statistical inference of parameters can be performed usingWald tests,F tests and
likelihood ratio tests. Wald and F tests require only fittinga single model and are
useful as a first look at model parameters. Whether a Wald orF test is used depends
on whether aφ parameter is estimated. For example, in a Poisson regression the
dispersion parameter is known (i.e.,φ = 1), so a Wald statistic would be used and it
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would be compared to a chi-squared distribution. In normal linear regression where
the dispersion parameter is estimated (i.e.,φ = σ2), extra variability is introduced
by having to estimate the variance. AnF statistic should be compared to theF-
distribution.

The likelihood ratio test applies to models whetherφ is known or estimated.
Likelihood ratio tests are more powerful than Wald andF , because they use infor-
mation from the likelihood at both the point of the null hypothesis and the maximum
likelihood estimate. The likelihood ratio tests require estimating two models.

Wald Statistics

A property of MLE is that the sampling distribution of parameter estimates is
asymptotically (i.e., for large samples) approximately multivariate normally (MVN)
distributed; that is,

β̂ββ ∼ MVN(βββ ,ΣΣΣ β̂ ). (2.33)

The matrixΣΣΣ β̂ is generally not a diagonal matrix; the estimatesβs are typically

correlated. Given the sampling distribution of̂bbbeeetttaaa in (2.33, hypothesis tests can be
conducted and confidence intervals for individual parameters, sets of parameters, or
linear combinations can all be computed.

Sinceβ̂ is MVN, then for theqth parameter,̂β
q
∼ N(β ,σ2

βq
). This fact can be

used to testHo : βq = β ∗
q by forming a z-statistic,

z=
β̂q−β ∗

q

ASEq
, (2.34)

where ASEq is the asymptotic standard error12 of β̂q. The ASE is an estimate ofσ2
βq

.

If the null hypothesis is true, thenz≈N(0,1). For example, in the cool-kid example,
the test statistic for the hypothesis that there is no effectof gender (i.e.,Ho : β3 = 0
versusHa : β3 6= 0) equalsz=−.4859/0.1640=−2.96 and compared to a standard
normal distribution has ap-value< .01.

The Wald statistic that tests an equivalent test thezstatistic in (2.34) is

Wald= z2 =

(
β̂q−β ∗

q

ASEq

)2

. (2.35)

When the null hypothesis is true, the Wald statistic in (2.35) has an approximate chi-
square distribution withν = 1 degree of freedom. Since the sampling distribution
of a Wald statistic is chi-square, these statistics are sometimes referred to as “chi-
square statistics.” The Wald statistics for each of the regression coefficients in both

12 The ASEs are obtained in the estimation procedure (i.e., square root of the qth diagonal element
of the inverse of the Hessian matrix) and are generally in theoutput from a program that fits GLMs
to data
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the probit and logit models are provided in Table??. According to the Wald statistics
in the cook-kid example, the effect of gender is significant (i.e., Wald= (−2.96)2 =
8.77,ν = 1, p < .01).

Although either thez or Wald can be used to test a single hypothesis, the Wald
statistic in (2.35) is actually a special case of a more general Wald statistic. The more
general form can be used to simultaneously test multiple hypotheses such whether
as a set of parameters all equal zero, the equality between parameters, contrasts
between them, and linear combinations of the parameters. The multivariate Wald
statistics are also useful for testing whether a categorical predictor with K levels
is significant rather then performing separate tests for each of the the individual
βs that would requireK − 1 tests of the dummy or effect codes. Another use of
the multivariate Wald statistic for categorical predictors is testing whether two (or
more) levels have the sameβ .

The hypothesis forQ∗ simultaneous tests is

Ho : CCC(β̂ββ −βββ ∗) = 000, (2.36)

whereCCC is a(Q∗×Q) matrix of constants andβββ is aQ×1 vector of model param-
eters. If the null hypothesis in (2.36) is true13, then

Wald= (β̂ββ −βββ ∗)′CCC′(((CCCΣΣΣ β̂ββCCC′)−1CCC(β̂ββ −βββ ∗) ∼ χ2
q . (2.37)

If C is (1×Q) vector with all 0s except for a 1 in theqth position, the test statistic
in (2.37) reduces to (2.35) for testing the hypothesisHo : βq = β ∗

q . Most computer
programs have options to compute these statistics to testHo : CCCβββ = 000; however, it is
good to know what the program is doing and to be able to test hypotheses other than
the default (i.e., specify a value forβββ ∗ that was perhaps obtained from a previous
study or implied by psychological theory).

In our cool–kid example, if we wanted to test whether the two variables popular-
ity and gender were significant, the hypothesis would beHo : β1 = β2 = 0) andC
could be defined as

CCC =

(
0 1 0
0 0 1

)
.

Note that the matrixC has as many columns as (non-zero) parameters in the model.
The number of rows ofCCC equals the number of tests that in turn equals the degrees of
freedom (i.e.ν = Q∗). Using this definition ofC for our psycholinguistics example,
the joint null hypothesis is

Ho : CCCβββ =

(
0 1 0
0 0 1

)



β0

β1

β2

β3

β4




=

(
β2

β3

)
=

(
0
0

)
. (2.38)

13 The matrixCCCΣΣΣ β̂ββCCC′ is the covariance matrix forCCC(β̂ββ −βββ ∗).
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The alternative hypothesis isHa : CCCβββ 6= 000. To compute the test statistic in (2.37)
requires an estimate of the covariance matrix of the parameter estimates. For the
bully example, this was obtained from the output when fittingthe model to data and
equals

Σ̂ΣΣ β̂ =




0.01952 -0.01078 -0.01161 -0.01194
-0.01078 0.02778 -0.00116 0.00223
-0.01161 -0.00116 0.02691 0.00246
-0.01194 0.00223 0.00246 0.02895


 .

UsingCCC, β̂ββ and Σ̂ΣΣ β̂ in (2.37), the Wald statistic for the psycholinguistics null hy-
pothesis (2.38) equals 29.86 and compared to a chi-square distribution withν = 2
(the number of rows inC) has ap-value< .01.

F-Tests

For models whereφ is estimated, there is extra variability due to the estimation
of φ that needs to be taken into account. For a single parameter and testingHo :
β1 = β ∗

q , the test statistic is still (2.34); however, the sampling distribution of it is
Student’st-distribution withν = N−Q. Alternatively, rather than using Student’st,
we could square the test statistic (i.e., compute (2.35)) and compare the result to an
F-distribution withν1 = 1 andν2 = N−Q.

As an example, consider the social segregation in the classroom example where
a normal linear regression model was fit to the data. Suppose that we wish to test
whether the interaction between a multicultural classroomand ethnicity is signifi-
cant,Ho : β6 = 0. The test statistic equals 0.1327/0.05936= 2.24 that compared to
a t-distribution withν = 302−7= 295 has ap-value= .03.

Sets and linear combinations of parameters can be simultaneously tested using
anF-test. To test the hypothesis thatHo : CCC(βββ −βββ ∗) = 000, the test statistic equals the
Wald statistic in (2.37) divided by the degrees of freedom for the test (i.e., by the
number of rows inCCC); that is,

F =
Wald
Q∗ =

(βββ −βββ ∗)′CCC′(CCCΣ̂ΣΣCCC′)−1CCC(βββ −βββ ∗)
Q∗ . (2.39)

As an example, consider the social segregation in the classroom example and we
want to test the hypothesis that there is no interaction between ethnicity and racial
distribution; that is,Ho : β5 = β6 = 0. To perform the test, first define the matrix of
linear combinations for the test,

CCC =

(
0 0 0 0 0 1 0
0 0 0 0 0 0 1

)
.

Since we are testing two parameters, the matrixCCC has two rows. Since there are
a total of seven parameters (i.e.,βββ = (β0,β1,β2,β3,β4,β5,β6)

′), theCCC matrix has
seven columns. An estimate ofΣΣΣ β̂ is also required. From the output from fitting the
normal linear regression model to the data, the following estimate of the covariance
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matrix was obtained:

Σ̂ΣΣ =




0.00221−0.00202−0.00021−0.00010 0.00075−0.00064−0.00021
−0.00202 0.00466 0.00006 0.00015 0.00004 0.00063 0.00003
−0.00021 0.00006 0.00134−0.00020−0.0004 0.00077−0.00003
−0.00010 0.00015−0.00020 0.00143 0.00003 0.00022 4.8E−6

0.00075 0.00004−0.00037 0.00003 0.00344 −0.0007 0.00020
−0.00064 0.00063 0.00077 0.00022−0.0007 0.00352 0.00004
−0.00021 0.00003−0.00003 4.8E−6 0.00019 0.00004 0.00143




.

UsingCCC, β̂ββ and Σ̂ΣΣ β̂ in (2.39), we obtain anF = 6.64 that compared to anF2,295

distribution has ap-value< .01.

Likelihood Ratio Tests

Likelihood ratio (LR) statistics can be used to test the samekinds of hypotheses
as Wald andF statistics. The latter use information at the maximum of thelike-
lihood; whereas, LR statistics are based on the value of the likelihood at the null
hypothesis and at the maximum of the likelihood. As a result the LR statistics are
more powerful.

A LR test involves placing restrictions on parameters of a model. The model
without restrictions is the “full model” and the model with restrictions on parameters
is the “nested” model. The nested model must be a special caseof the full model.
Restrictions include settings some regression coefficients equal to zero or placing
equality restrictions on them. Although the former is the most common (i.e.,Ho :
β = 0), the later are particularly useful for categorical predictor variables.

Suppose that we wish to test the hypothesis thatQ∗(< Q) regression coefficients
equal 0. To compute an LR statistic for this test requires themaximum of the like-
lihood function for the full model that includes theQ∗ effects in which case the
correspondingβ are estimated, and the maximum of the likelihood for a nested
model that excludes theQ∗ effects which sets theβ of interest equal to 0. The LR
statistic equals

LR = −2(ln(L(M0))− ln(L(M1))), (2.40)

where Ł(M0) is the maximum of the likelihood for the nested model andL(M1) is
the maximum of the likelihood of the full model. If the null hypothesis is true, then
both likelihood are similar in value such thatLR statistics close to 0LR. If the null
if false, then the nested model will have a larger value of thelikelihood and theLR
statistic will be larger. When the null hypothesis is true, the sampling distribution of
anLR statistic is chi-square with degrees of freedomν equal toQ∗.

Revisiting the cool-kid example, we re-test hypothesis forgender and popular-
ity for the logit model; namely,Ho : β2 = β3 = 0. The ln likelihood for the full
model is reported in Table 2.5 (i.e., ln(likelihood) = −450.1081). For the null
model, dropping the effects gender and popularity from the logit model yields
ln(likelihood) = −465.5907 The test statistic equals
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LR = −2(−465.5907− (−450.1081))= 30.97

and compared toχ2
2 has ap-value< .01. Note that the equivalent Wald test statistic

for this hypothesis was 29.86. The Wald is smaller because the LR is more powerful.

2.6.2 Confidence Intervals

Interval estimates of parameters provide information regarding the precision of esti-
mates by giving a range of plausible values for parameters and estimated means
(function of parameters). Confidence intervals for parameters of GLMs are pre-
sented followed by confidence bands for estimated means are discussed.

Confidence Intervals for Parameter Estimates

Confidence intervals can be placed on parameters and linear functions of param-
eters. The method presented for confidence intervals for means can be adapted to
provide confidence intervals for linear functions of parameters. In this section, the
focus is on confidence intervals for parameters. The method for forming confidence
intervals relies on the fact that maximum likelihood parameter estimates follow a
normal distribution (i.e.,̂βq∼ N(βq,var(β̂q)).

For models whereφ is known such as the Poisson whereφ = 1 or the binonmial
whereφ = 1/n, a(1−α)100% confidence interval forβq is

β̂q±zα/2ASEq, (2.41)

wherezα/2 is the(1−α/2)th percentile of the standard normal distribution,N(0,1).
In the cool-kid example, a 95% confidence interval for the popularity, β3 is

0.7856±1.960(0.1667)−→ (0.49,1.11). (2.42)

When a link function other than the identity is used, a transformation of the
end points of (2.42) is often more useful. In our logistic regression, a more useful
confidence interval is one for the odds ratio. Since odds ratios equal exp(β3), taking
the exponential of the end points of a confidence interval forβ , yields an interval
for the odds ratio. In our psycholinguistics example, the 95% confidence interval for
the odds ratio for the interaction is(exp(0.49),exp(1.11)) −→ (1.58,3.04).

For models whereφ is estimated such as the normal, inverse Gaussian or gamma
distribution, a(1−α)100% confidence interval forβq can be formed as in (2.41)
except that instead of using a value from the standard normaldistribution, the(1−
α/2)th percentile of thet-distribution with ν = N −Q (i.e., ν = Sample size−
Number of parameters)should be used. Specifically,

β̂q± t(ν,.975)ASEq. (2.43)
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For example, in the social segregation example in Section 2.3.1 where a nor-
mal linear regression was fit to data, a 95% confidence interval for the interaction
parameter between ethnicity and a multicultural classroom, β6 is

0.1327±1.968(0.05936)−→ (0.02,0.25), (2.44)

whereβ̂6 = 0.1327,t = 1.968 is the 97.5th percentile oft-distribution with ν =
302−7= 295. and 0.05936 is the estimated standard error ofβ̂6.

Confidence Bands for Predicted Means

In normal linear regression it is common to place confidence bands on regression
lines (i.e., for E(ŷi)). The same can be done for any GLM.

Putting confidence bands on E(ŷi) use two facts: (a) estimated regression coef-
ficients follow a multivariate normal distribution as stated in (2.33), and (b) linear
combinations of normally distributed random variables arethemselves normally dis-
tributed random variables. The implication of these two facts is that

η̂
i
= xxx

′
i β̂ββ ∼ N(ηi ,σ2

ηi
). (2.45)

wherexxx′i = (1,x1i , . . . ,xQi) is theith row from the design matrix, and̂βββ
′
= (β̂0, β̂1,

. . . , β̂Q). To make use of (2.45), an estimate ofσ2
ηi

is needed.

Once a GLM is fit to data, an estimate of the covariance matrix of the βs, Σ̂ΣΣ β̂ββ is
available. Using facts about linear combinations of randomvariables (in this case
theβ̂s), the estimated variance ofη̂i σ2

η̂i
equals

σ̂2
ηi

= xxx′i Σ̂ΣΣ β̂ββ xxxi . (2.46)

For models whereφ is known, a(1−α)100% confidence interval forηi is

η̂i ±zα/2σ̂η̂i
. (2.47)

Whenφ is estimated, a(1−α)×100% confidence interval forηi is

η̂i ± tν,α/2σ̂η̂i
, (2.48)

wheret is from Studentst-distribution withν = N−Q.
Given the confidence interval forη , the confidence interval for E(ŷi |xxxi) = µi is

found by applying in inverse of the link function to the end point of the confidence
interval for η . Specifically, for models whereφ is known, the confidence interval
for E(ŷi |xxxi) is

g−1(η̂i −zα/2σ̂η̂i
), g−1(η̂i +zα/2σ̂η̂i

) (2.49)

For the case whenφ is estimated,zα/2 is replace bytν,α/2.
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As an example, consider the cool-kid example where a logit model was fit to the
data. The model parameters are reported in Table 2.5, and thelast two columns of
Table 2.4 contain 95% confidence intervals for the probability πi of an ideal student
being nominated as cool. As an example, we find the confidence interval for a white
boys with low popularityπ3 by first computing the linear predictor. In this case,
x = (1,0,1,0)′, β̂ = (0.1403,0.7856,−0.4859,−1.4492)′, and

η̂3 = x′β̂ = 0.1403−0.4859= −0.3456. (2.50)

The estimated variance forη̂3 equals

σ̂2
η̂2

= (1,0,1,0)




0.01952 -0.01078 -0.01161 -0.01194
-0.01078 0.02778 -0.00116 0.00223
-0.01161 -0.00116 0.02691 0.00246
-0.01194 0.00223 0.00246 0.02895







1
0
1
0




= 0.0232,

and the standard error for̂η2 is
√

σ̂2
η̂2

=
√

0.0232= 0.1523. The 95% confidence

interval forη2 is

−0.3456±1.96(0.1523)−→ (−0.6442,−0.0470), (2.51)

and the 95% confidence band forπ2 is found by using the inverse transformation of
the logit on the end points:

(
exp(−0.6442)

1+exp(−0.6442
,

exp(−0.0470)
1+exp(−0.0470

)
−→ (0.34,0.49). (2.52)

In our cool-kid example, all 8 observed proportions fall within their 95% con-
fidence bands (see Table 2.4). Since all of the proportions are well fit by the logit
model and our global goodness-of-fit test statistics were not significant, it is tempt-
ing to conclude that the logit model is a good model for the cool-kid data; however,
all of these statistical tests and confidence statements forthe cool-kid data are not
valid. The assumption of independent observations required for these tests and con-
fidence statements has clearly been violated (i.e., students nested within peer groups
within classrooms).

2.7 Summary

The GLM framework allows us to separate the decisions regarding how the response
variable is distributed, what predictor variables should be included, and how the
mean of the response is related to the linear function of the predictors. The decou-
pling of these decisions enables researchers to better capture the nature of the rela-
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tionship between the response and predictor variables in anefficient manner. These
three decisions are apparent by writing a GLMs in terms of thethree components.

All generalized linear models are of the form:

y
i
∼ f (y|µi ,φ)

g(µi) = ηi

ηi = ∑
q

βqxiq = βββ ′xxxi ,

where f (y|µi ,φ) is the distribution function for the response variable,g( ) is
the link function,ηi is the linear predictor,βq are regression coefficient, and
xiq are values of the predictor variables.

A summary of members of common distributions that are special cases of the
natural exponential family are given in Table A.1 along withthe type and range of
response values, the canonical link functions and other information for each special
case.

The examples used in this chapter illustrated the construction of GLMs for dif-
ferent types of data; however, the GLMs did not incorporate the nested structure of
the data. The models lacked the ability to deal with dependent observations. This is
remedied in the remainder of this text.

Problems & Exercises

These need to be fixed up, but they give a general idea of what data we have. These
exercises can run through the book. More will be added.

2.1.Give examples of response variables whose distribution might be best repre-
sented by the following distributions: (a) normal, (b) gamma, (c) inverse Gaussian,
(d) beta, (e) binomial, and (f) Poisson.

2.2.Fit linear regression model to Allen data ignoring the fact that there eight level
2 units (STILL NEED TO GETNICOLE’ S DATA)

2.3.Use the bully data set from Espelage et al. (2003) and fit a linear regression
model to the data where empathy scores are the response variable and the bully
scale score, the fight scale score, and gender are possible explanatory variables.

2.4.The study by Rodkin et al. (2007) of racial segregation in classrooms included
three other measures of segregation based on sociometric data. The other measures
were based on responses children made to questions about their peer groups, who
the like, and who they like the least. Fit linear regression models to the measures
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of segregation based on peer group affiliation using the samepredictor variables as
used in Section 2.3.1.

2.5.Use the racial segregation data and do problem??, except use as the response
the sociometric measure based on who children like the most.

2.6.Use the racial segregation data and do problem??, except use as the response
the sociometric measure based on children that a child dislikes.

2.7.A data set that is skewed.. . . Perhaps some of Nicole’s data ondomestic vio-
lence from NIJ tech report. . .once we have them written up for publication which is
probably end of summer/early fall.

2.8.A dichotomous response variable—use linear, logit & probitlink and com-
pare.Could use bully data and dichotomize fight scale score into fight/no fight.

2.9.The data from this problem comes from a study by Rodkin et al. (2006) with
N = 526 fourth to sixth graders who were nominated as being amongthe “coolest”
kids in their class. The response variable is whether a toughkid is nominated as
“cool.” The possible explanatory variables the child’s race (race= 1 of student is
African American and 0 Caucasian), standard score for popularity of the nomina-
tor(pop), child’s peer group gender (gender= 1 for boy group, 0 for girl group),
and the location of the study (site= 1 mid-west, 0 south).

a Fit linear probablity, logit and probit models to the data.
b Which do you think is the best. Why?
c Interpret the results of you favorite model.

2.10.Rather than using logit and probit models for the cool-kid data in Table 2.4,
use Poisson regression to model the number of ideal kids nominated at cool.

a Fit a models with main effects and two-way interactions.
b Which model fit in part [a] is the same as the logit model givenin the text? Show

the relationship between the logit model and the Poisson regression model that
are equivalent.

b Fit a model with all main effect, two-way interactions and athree-way interac-
tion. What do you notice? Explain.



Appendix A
The Natural Exponential Dispersion Family of
Distributions

Different author’s use slightly different notation for representing the natural expo-
nential family. Our notation basically follows McCullagh and Nelder (1989) and we
consider the two parameter version or the natural exponential dispersion family.

To introduce the exponential family, we will start with the familiar normal distri-
bution, and put it into the basic or canonical form of the natural exponential distri-
bution. The normal distribution function is

f (y;µ ,σ2) =
1

(2πσ2)1/2
exp

[−(y− µ)2

2σ2

]
,

(A.1)

wherey is the response variable,µ is the mean, andσ2 is the variance. Taking the
ln and exp of the first term on the right-hand side of equation(A.1) and multiplying
the squared term yields,

f (y;µ ,σ2) = exp

[
ln
(
(2πσ2)−1/2

)
+

2yµ − µ2−y2

2σ2

]

= exp

[
yµ − µ2/2

σ2 +
(

ln
(
(2πσ2)−1/2

)
−y2/(2σ2)

)]

f (y;θ ,φ) = exp

[
yθ −b(θ )

φ
+c(y,φ)

]
, (A.2)

whereb( ) andc( ) are functions. Sometimes, a weight parameterw is included such
that rather thatφ , the dispersion isφ/w.

For the normal distribution these functions are defined as

θ = µ
b(θ ) = µ2/2

c(y,φ) = ln
(
(2πσ2)−1/2

)
−y2/(2σ2).

85
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The parameterθ is thecanonical or natural parameterand it is a function of the
mean. In the case of the normal distribution,θ = µ , and for the Poisson distribution
θ = exp(µ). The functionc(y,φ) is a normalization term that ensures that probabil-
ities sum to one. The functionb(θ ) is known as the cumulant function. The mean
and variance of the distribution can be obtained from the first and second derivatives
of the likelihood with respect toθ . This is shown shown below.

In some cases the dispersion parameterφ may be weighted. As an example, con-
sider the normal distribution whereφ = σ2. If instead of single observations, we
consider a sampling distribution of means of sizeN where observations are from
the normal distribution with meanµ and varianceσ2, thenφ = σ2/n. Alternatively,
consider the binomial distribution,φ = 1/n, the number of trials.

As a second example of canonical form of the natural exponential family, con-
sider the Poisson distribution. By taking the exponential and logarithm, we obtain

P(y;µ) =
µye−µ

y!

= exp

[
ln

(
µye−µ

y!

)]

= exp[yln(µ)− µ − ln(y!)] .

This last line has the same form as the canonical form of the exponential family
given in (A.2), where

θ = ln(µ)

φ = 1

b(θ ) = exp(ln(µ)) = exp(θ )

c(y,φ) = − ln(y!).

Given the canonical form of a member of the exponential family, the canonical
link function is the function ofµ that yields theθ . For example, with the Poisson
distribution, the canonical link is the ln, because ln(µ) = θ . The canonical link of
the normal distribution is the identity, where the mean is identical to the natural
parameters (i.e.,µ = θ .). Furthermore, canonical links are those such thatθ = η
in the GLM. In a GLM with a canonical link, there exist sufficient statistics for
regression parameters (i.e., theβ ’s).

The specifications for the normal, Poisson and other common distributions that
are members of the exponential dispersion family are given in Table A.1, includes
ones that will be covered later in the text.
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Table A.1 Distributions in the natural exponential family covered inthis chapter or in later chapters along with their canonicallink functions.

Dispersion Cumulant Mean Variance Probability
Type of Range Canonical parameter function E(y) = µ function density or mass

Distribution Notation number ofy link φ b(θ) =b′(θ) b
′′
(θ)φ f (y; µ ,φ)

Normal N(µ ,σ 2) real −∞ < y < ∞ Identity σ 2 θ 2/2 θ σ 2 (2.1)

Gamma Gamma(µ ,φ) real 0< y Inverse φ − ln(−θ) −1/θ µ2φ (2.2)

Inverse Gaussian IGauss(µ ,φ) real 0< y 1/µ2 φ −(−2θ)1/2 (−2θ)−1/2 µ3 (2.3)

Bernoulli Bernoulli(π) binary 0,1 Logit 1 ln(1+eθ )) eθ /(1+eθ ) µ(1−µ) (2.6)

Binomial Binomial(π ,n) integer 0,1, . . .n Logit 1/n ln(1+eθ ) eθ /(1+eθ ) nµ(1−µ) (2.8)

Poisson Poisson(µ) integer 0,1, . . . Log 1 eθ eθ µ (2.10)

Negative Binomial† NegBin(p, r) integer 0,1, . . . Log φ
† The parametrization as a member of the exponential family is in terms of probability ofy “failures” before therth “success”. For the parametrization
in terms ofµ andφ , µ = (1− p)/(r−1p) andφ = 1/r (Hilbe 2007).
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A.0.1 Likelihood, Score & Information

The likelihood of the natural exponential family equals (A.2) except that we con-
sidery as given andθ andφ as unknown. The logarithm of the likelihood is easier
to work, that is,

L(θ ,φ |y) = ln( f (y;θ ,φ))

=
yθ −b(θ )

φ
+c(y,φ) (A.3)

To derive the mean and variance for the natural exponential family, two standard
results from likelihood theory are used. The first is

E

[
∂L(θ ,φ |y)

∂θ

]
= 0, (A.4)

where∂L(θ ,φ |y)/∂θ is known as the score or gradient and if often represented at
∆∆∆ .

The second result is

E

[
∂ 2L(θ ,φ |y)

∂θ 2

]
+E

[(
∂L(θ ,φ |y)

∂θ

)2
]

= 0. (A.5)

The first partial derivative of (A.3) with respect toθ is

∂L(θ ,φ ;y)
∂θ

=
y−b′(θ )

φ
. (A.6)

To obtain the mean, (A.6) is used in (A.4) and the resulting equation solved for E(y);
that is,

E

[
y−b′(θ )

φ

]
= 0

E(y) = µ = b′(θ ). (A.7)

The second partial derivative of (A.3) equals

∂ 2L(θ ,φ |y)
∂θ 2 =

b′′(θ )

φ
. (A.8)

The(Q×Q) matrix with elements equal to second partial derivatives in(A.6) is the
Hessian matrix and often represented asHHH. Using (A.6) and (A.8) in (A.5) yields
an equation that can be solved for the variance; that is,

E

[
b′′(θ )

φ

]
+E

[(
y−b′(θ )

φ

)2
]

= 0
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−b
′′
(θ )

a(φ)
+

var(y)

φ2 = 0

var(y) = b
′′
(θ )φ . (A.9)

Equation (A.9) is known as thevariance function.
An important property of the natural exponential family is that the variance de-

pends onθ and hence on the mean, as well as onφ . Of all the member of the
family of natural exponential distribution the variance function for the normal dis-
tribution is the only one that does not depend on its mean, becauseb

′′
(θ ) = 1 so that

var(y) = σ2.
The values forφ , b′(θ ) andb′′(θ ) are give in Table A.1 for various members of

the natural exponential family.

A.0.2 Estimation

The Newton-Raphson algorithm starts with some initial estimates of the parameters,
βββ [0], then iteratively up-dates the parameters until they do notchange. The up-dating
equation is

βββ [t+1] = βββ [t] −HHH[t]−1
∆∆∆ [t], (A.10)

whereβββ [t+1] is the vector of up-dated parameters,βββ [t] is the current estimate of
parameters,HHH [t] is the Hessian matrix computed using the current estimates of the
parameters, and∆∆∆ [t] is the gradient computed using the current estimates of the
parameters. The Hessian matrix provides an estimate of the covariance matrix for
the parameters; namely,Σ̂ΣΣ β̂ββ = −HHH−1.





Appendix A
Index of Data Sets

Data Set Type of Response Section/Problem

bully-nominations count Sect. 2.3.4, Prob. 2.3
cool-kids dichotomous Prob. 2.9
Oydessy-of-the-Mind continuous Sect. 2.3.2
parents-n-kids continuous
psycholinguistics dichotomous Sect. 2.3.3, Prob. 2.10
Racial-Segregation continuous Sect. 2.3.1 Prob. 2.4, Prob. 2.5,

Prob. 2.6
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