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Outline

Introduction (motivation and history).

“Review” ordinary linear regression.

Components of a GLM.
1 Random component.
2 Structural component.
3 Link function.

Natural exponential family (technical).

Normal Linear Regression re-visited.

GLMs for binary data (introduction).
Primary Example: High School & Beyond.

1 Linear model for π.
2 Cumulative Distribution functions (alternative links).
3 Logistic regression.
4 Probit models.
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Outline (continued)

GLMs for count data.
1 Poisson regression for counts.

Example: Number of deaths due to AIDs.
2 Poisson regression for rates.

Example: Number of violent incidents.
Inference and model checking.

1 Wald, Likelihood ratio, & Score test.
2 Checking Poisson regression.
3 Residuals.
4 Confidence intervals for fitted values (means).
5 Overdispersion.

Fitting GLMS (a little technical).
1 Newton-Raphson algorithm/Fisher scoring.
2 Statistic inference & the Likelihood function.
3 “Deviance”.

Summary
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Introduction to Generalized Linear Modeling

Benefits of a model that fits well:

The structural form of the model describes the patterns of
interactions or associations in data.

Inference for the model parameters provides a way to evaluate which
explanatory variable(s) are related to the response variable(s) while
(statistically) controlling for other variables.

Estimated model parameters provide measures of the strength and
(statistical) importance of effects.

A model’s predicted values “smooth” the data — they provide good
estimates of the mean of the response variable.
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Advantages of a Modeling Approach

Over Significance Testing

Models can handle more complicated situations.

For example, Breslow-Day is limited to 2× 2×K tables and does not
provide estimates of common odds ratios for tables larger than 2× 2.

Loglinear models can be used to test for homogeneous association in
I × J ×K (or higher–way) tables and provide estimates of common
odds ratios.

With models, the focus is on estimating parameters that describe
relationships between/among variables.
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A Little History

From Lindsey (who summary that from McCullagh & Nelder who got a lot
from Stiegler)

Multiple linear regression — normal distribution & identity link
(Legendre, Guass: early 19th century).

ANOVA — normal distribution & identity link (Fisher: 1920’s –
1935).

Likelihood function — a general approach to inference about any
statistical model (Fisher, 1922).

Dilution assays — a binomial distribution with complementary log-log
link (Fisher, 1922).

Exponential family — class of distributions with sufficient statistics
for parameters (Fisher, 1934).

Probit analysis — binomial distribution & probit link (Bliss, 1935).
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A Little History (continued)

Logit for proportions — binomial distribution & logit link (Berkson,
1944; Dyke & Patterson, 1952)
Item analysis — Bernoulli distribution & logit link (Rasch, 1960).
Log linear models for counts — Poisson distribution & log link (Birch,
1963).
Regressions for survival data — exponential distribution & reciprocal or
log link (Feigl & Zelen, 1965; Zippin & Armitage, 1966; Glasser, 1967).
Inverse polynomials — Gamma distribution & reciprocal link (Nelder,
1966).
Nelder & Wedderburn (1972): provided unification. They showed

All the previously mentioned models are special cases of a general
model, “Generalized Linear Models”
The MLE for all these models could be obtained using same algorithm.

All of the models listed have distributions in the
“Exponential Dispersion Family”
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Software Developments

Computer software development in the 70’s: “GLIM”
Short for “Generalized Linear Interactive Modelling.

Any statistician or researcher could fit a larger class of models (not
restricted to normal).

Growing recognition of the likelihood function as central to all
statistical inference.

Allowed experimental development of many new methods & uses for
which it was never originally imagined.

PROC GENMOD (GENeralized linear MODels) in SAS.

glm package in R.
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Limitations

Linear function

Responses must be independent

There are ways around these by going to a slightly more general
models and using more general software (e.g., SAS/NLMIXED,
GLIMMIX, NLP, GAMs).

R has specialized packages for some of the models that are not linear
and/or dependent (e.g., packages lme4, logmult, gam).
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Review of Ordinary Linear Regression

Linear (in the parameters) model for continuous/numerical response
variable (Y ) and continuous and/or discrete explanatory variables (X’s).

Yi = α+ β1x1i + β2x2i + ei

where
ei ∼ N (0, σ2) and independent.

This linear model includes

Multiple regression

ANOVA

ANCOVA

C.J. Anderson (Illinois) Introduction to GLM 10.10/ 1



Simple Linear Regression

Yi = α+ βxi + ei

where ei ∼ N (0, σ2) and independent.

We consider X as fixed, so Yi ∼ N (µ(xi), σ
2).

In regression, the focus is on the mean or expected value of Y , i.e.,

E(Yi) = E(α+ βxi + ei)

= α+ βxi + E(ei)

= α+ βxi
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GLMs go beyond Simple Linear Regression

Generalized Linear Models go beyond this in two major respects:

The response variable(s) can have a distribution other than normal —
any distribution within a class of distributions known as “exponential
family of distributions”.

The relationship between the response (Y ) and explanatory variables
need not be simple (“identity”). For example, instead of

Y = α+ βx

we can allow for transformations of Y

g(Y ) = α+ βx

These are ideas we’ll come back to after we go through an example
. . . .
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Counts of T4 cells/mm in Blood Samples

From Lindsey (1997) from Altman (1991). The counts equal T4 cells/mm in
blood samples from 20 patients in remission from Hodgkin’s disease & 20 other
patients in remission from disseminated malignancies:

C.J. Anderson (Illinois) Introduction to GLM 13.13/ 1



Counts of T4 cells/mm in Blood Samples

From Lindsey (1997) from Altman (1991). The counts equal T4 cells/mm in
blood samples from 20 patients in remission from Hodgkin’s disease & 20 other
patients in remission from disseminated malignancies:

Hodgkin’s Non-Hodgkin’s
396 568 375 375

1212 171 752 208
554 1104 151 116
257 435 736 192
295 397 315 1252
288 1004 657 700
431 795 440 771

1621 1378 688 426
902 958 410 979

1283 2415 377 503

Is there a “difference” in cell counts between the two diseases?
C.J. Anderson (Illinois) Introduction to GLM 13.14/ 1



What is Meant by “Difference”?

Mean counts

Variability

Overall form of the distribution

Naive Approach: Assume a normal distribution and do a “t-test” (i.e.,
compute difference between means and divide by s.e. of difference).

More Sophisticated approach: Assume a Poisson distribution and
compute difference between log of the means (i.e., ratio of means).
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Summary of some possibilities and results

AIC “Likelihood ratio”
√
“Wald”

No Difference Estimate
Model difference Difference in −2 log(L) /s.e.
Normal 608.8 606.4 4.5 2.17
Normal log link 608.8 606.3 4.5 2.04
Gamma 591.2 587.9 5.2 2.27
Inverse Gaussian 589.9 588.1 3.8 1.87
Poisson 11652.0 10285.3 1368.96 36.52
Negative Binomial 591.1 587.9 5.3 2.37

AIC = weighs goodness-of-fit & model complexity (smaller is better)

Wald = ( ̂parameter/ ̂standard error)2.

I get slightly different results than published and between SAS & R.

Assumptions?
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Considering Assumptions

T4 cells/mm and Hodgkin’s disease data continued

Independence of observations

Recall that with Poission
µ = σ2

Sample statistics

disease N Mean Variance

hodgkin 20 823.20 320792.27
non-hodgkin 20 521.15 85568.77

Homogeneity assumption is suspect.
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Components of Generalized Linear Models

There are 3 components of a generalized linear model (or GLM):

1 Random Component — identify the response variable (Y ) and
specify/assume a probability distribution for it.

2 Systematic Component — specify what the explanatory or predictor
variables are (e.g., X1, X2, etc). These variable enter in a linear
manner

α+ β1X1 + β2X2 + . . .+ βkXk

3 Link — Specify the relationship between the mean or expected value
of the random component (i.e., E(Y )) and the systematic
component.
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Components of Simple linear regression

Yi = α+ βxi + ǫi

Random component: Y is the response variable and is normally
distributed. . . generally we assume ǫi ∼ N (0, σ2).

X is the explanatory variable is linear in the parameters. . .

α+ βxi

Identity link.
g(E(Yi)) = E(Yi) = α+ βxi

Closer look at each of these components. . . .
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Random Component

Let N = sample size and suppose that we have Y1, Y2, . . . , YN observations on
our response variable and that the observations are all independent. Y ’s are
discrete variables where Y is either
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Random Component

Let N = sample size and suppose that we have Y1, Y2, . . . , YN observations on
our response variable and that the observations are all independent. Y ’s are
discrete variables where Y is either
Dichotomous (binary) with a Counts (including cells of a
fixed numbers of trials. contingency table):
success/failure Number of people who die
correct/incorrect from AIDS during a given
agree/disagree time period.
academic/non-academic program Number of times a child

tries to take a toy away
from another child.

Number of times patents
generated by firms.

Binomial distribution. Poisson distribution
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Distributions for Discrete Variables

Thus the two distributions we will be primarily using are

Binomial

Poisson

With GLMs, you can use any distribution that belongs to the “exponential
family of distributions”. This is a wide class of distributions that have
many of the “nice”properties of the Normal distribution. (we’ll look at this
in a bit more detail later).
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Systematic Component

As in ordinary regression, we will be modelling means. The focus is on the
expected value of our response variable

E(Y ) = µ

We want to investigate whether and how µ varies as a function of the
levels of our predictor or explanatory variables, X’s.

The systematic component of the model consists of a set of explanatory
variables and some linear function of them.

βo + β1x1 + β2x2 + β3x3 + . . .+ βkxk.

This linear combination of our explanatory variables is referred to as a
“linear predictor”.
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Linear Predictor

This restriction to a linear predictor is not all that restrictive.

For example,

x3 = x1x2 — an “interaction”.

x1 ⇒ x21 — a “curvilinear” relationship.

x2 ⇒ log(x2) — a “curvilinear” relationship.

βo + β1x
2
1 + β2 log(x2) + β3x

2
1 log(x2)

This part of the model is very much like what you know with respect to
ordinary linear regression.
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The Link Function

“Left hand” side of an “Right hand” side of the
equation/model — the equation— the systematic
random component, component; that is,

E(Y ) = µ α+ β1x1 + β2x2 + . . . + βkxk

We now need to “link” the two sides.

How is µ = E(Y ) related to α+ β1x1 + β2x2 + . . .+ βkxk?

We do this using a “Link Function” =⇒ g(µ)

g(µ) = α+ β1x1 + β2x2 + . . .+ βkxk
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More about the Link Function

Important things about g(.):

This function g(.) is “monotone” — as the systematic part gets larger,
µ gets larger (or smaller).
The relationship between E(Y ) and the systematic part can be
non-linear.

Some common links are

Identity (ordinary regression, ANOVA, ANCOVA):

E(Y ) = α+ βx

Log link which is often used when Y is nonnegative (i.e., 0 ≤ Y )

log(E(Y )) = log(µ) = α+ βx

This yields a “loglinear” model.
Logit link, which is often used when 0 ≤ µ ≤ 1 (when response is
dictohomous/binary and we’re interested in a probability).

log(µ/(1− µ)) = α+ βx
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General Model Formula for a GLM

g(µ) = α+ β1x1 + β2x2 + . . .+ βkxk

The links ones given on previous slide and below are special ones
(depending on the assumed distribution):

Distribution “Natural Parameter” “Canonical Link”

Normal µ Identity
Poisson log(µ) log
Binomial log(µ/(1 − µ)) logit
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Natural Exponential Family of Distributions

“One-Parameter Exponential Distribution”

Probability density or mass functions belonging to the natural exponential
family have the general form

f(yi; θi) = exp {a(yi)b(θi)− c(θi) + d(yi)}
where

yi is an observation (i = 1, . . . , N).
θi is the parameter of the distribution for i and b(θi) is the
location parameter (i.e., the mean; other parameters such are
variance are often considered “nuisance” parameters).
a(.), b(.), c(.), and d(.) are all functions.

When a(yi) = yi, then the density/mass is in “canonical form”, and we have
f(yi; θi) = exp{yib(θi)− c(θi) + d(yi)}

When in canonical form, the “natural parameter” is b(θi).
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According to Webester’s Dictionary

Canonical means

conforming to a general rule

reduced to the simplest or clearest scheme possible

the simplest form of a matrix (specifically the form of a square matrix
that has zero off-diagonals).

Now for some examples. . .
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The Poisson Distribution

f(y;µ) =
µye−µ

y!

where
y = 0, 1, 2, . . .
θ = µ (the parameter of the distribution).

Now to put this in canonical form:

f(y;µ) = exp

(

log

(

µye−µ

y!

))

= exp
(

y log(µ) + e−µ − log(y!)
)

= exp (yb(µ)− c(µ) + d(y))

a(y) = y
b(µ) = log(µ), the natural parameter.
c(µ) = exp(−µ).
d(y) = − log(y!).

The canonical link for the Poisson distribution: log(•).
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The Binomial Distribution

f(y;π) =

(

n
y

)

πy(1− π)n−y

where y = 0, 1, . . . , n.
n = number of trials.
π = probability of a success .
π is the parameter of interest and n is assumed to be known.

We now re-express the distribution as

f(y;π) = exp

(

log

[(

n
y

)

πy(1− π)n−y

])

= exp

(

y log(π) + (n− y) log(1− π) + log

((

n
y

)))

= exp(y log(π/(1 − π)) + n log(1− π) + log

(

n
y

)

)

= exp(yb(π)− c(π) + d(y))
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Canonical Form of the Binomial Distribution

f(y;π) = exp(y log(π/(1 − π)) + n log(1− π) + log

(

n
y

)

)

= exp(yb(π)− c(π) + d(y))

where
a(y) = y

b(π) = log(π/(1 − π)), the natural parameter

c(π) = −n log(1− π)

d(y) = log

(

(
n
y
)

)

.

The canonical link is the logit— the log of the odds
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Exponential Dispersion Family

Generalization of the one-parameter exponential family: includes a
constant scale parameter φ.

The canonical form of the exponential dispersion family:

f(yi; θi, φ) = exp

[

yib(θi)− c(θi)

ri(φ)
+ d(yi, φ)

]

where ri(φ) is a function of the dispersion parameter.

Notes:

For Poisson and Binomial ri(φ) = 1.

If φ is known and ri(φ) = r(φ), then back to one-parameter
exponential family.

With this generalization. . .
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Normal Distribution

f(y;µ;σ2) =
1

(2πσ2)1/2
exp

( −1

2σ2
(y − µ)2

)

θ (parameter of the distribution) is µ, the mean.
The variance σ2 is considered a “nuisance” parameter.

Putting f(y;µ) into it’s canonical form.

f(y;µ;σ2) = exp

(

log

(

1

(2πσ2)1/2

))

exp

( −1

2σ2
(y − µ)2

)

= exp
(

log
(

(2πσ2)−1/2
))

exp

( −1

2σ2
(y − µ)2

)

= exp

[

yµ− µ2/2

2σ2
− 1/2(log(2πσ2))− y2

2σ2

]

= exp

[

yb(µ)− c(µ)

r(σ2) + d(yi, σ2)

]
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The Canonical Form of the Normal Distribution

f(y;µ;σ2) = exp

[

yµ− µ2/2

2σ2
− 1/2(log(2πσ2))− y2

2σ2

]

= exp

[

yb(µ)− c(µ)

r(σ2)
+ d(yi, σ

2)

]

where a(µ) = y

b(µ) = µ

c(µ) = µ2/2.

d(y;φ) = −1/2(log(2πσ2))− y2/(2σ2).

r(σ2) = σ2

So,

b(µ) = µ is the “natural parameter”.

The canonical link is the identity.
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The Normal GLM: Ordinary linear regression

Generalized linear models go beyond ordinary linear regression in two
ways

1 The random component can be something other than Normal.
2 We can model a function of the mean.

GLM have a definite advantage over the “traditional” way of
analyzing non-normal responses (Y ). The traditional way to handle
non-normal responses:

1 Transform your data so that responses are approximately Normal with
constant variance.

2 Use least squares.

Transforming to normality with constant variance very rarely works. . .
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Problem with the Traditional Approach

A transformation that produces constant variance may not yield
normally distributed response.

Counts that have a Poisson distribution where E(Y ) = µ and
Var(Y ) = µ.

Binomial distributed responses where E(Y ) = nπ and
Var(Y ) = nπ(1− π).

Linear models often fit discrete data very badly — they can yield
predicted values of µ that are outside the range of possible values for
Y .
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Problem with the Traditional Approach

A transformation that produces constant variance may not yield
normally distributed response.

Counts that have a Poisson distribution where E(Y ) = µ and
Var(Y ) = µ.

Binomial distributed responses where E(Y ) = nπ and
Var(Y ) = nπ(1− π).

Linear models often fit discrete data very badly — they can yield
predicted values of µ that are outside the range of possible values for
Y .

Consider counts that have a Poisson distribution where Y ≥ 0.
Consider Binomial distributed responses where 0 ≤ π ≤ 1.
Linear models can yield negative predictions.
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Advantage of GLM over Traditional Regression

You don’t have to transform Y to normality.

The choice of link is separate from choice of random component.

If the link produces additive effects, then don’t need constant
variance. (I’ll show an example of this next week).

The models are fit using maximum likelihood. Thus optimal
properties of estimators.

Next we’ll now talk about GLMS for

1 Dichotomous (binary) data — linear, logit, probit and logistic
regression models. (introduce them now and go into much more
detail later).

2 Poission regression for count data — these are very similar to
regression that you are familiar with, but with a twist.
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