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Outline

Inference for model parameters (i.e., confidence intervals and
hypothesis tests).

Wald Statistics
Likelihood ratio tests.
(Score tests).

Assessing model fit.

Global fit statistics (X2, G2).
Residuals.
Confidence intervals for fitted values
Overdispersion.

Extended example: Bullies
Zero Inflated Models (ZIPs)
Fitting GLMs, which provides further tools and insights into inference
and model assessment.

Much of the basic logic and concepts for Poisson regression are the same as those
for logistic regression, but we’ll consider logistic regression in more detail when we
cover Chapter 5.

C.J. Anderson (Illinois) Inference & Model Checking 2.2/ 97



Inference Global Residuals CIs Overdispersion Bully ZIP SAS/R Fitting GLMS Likelihood function “Deviance” Summary

Inference for model parameters

Suppose that we’ve fit the Poisson regression model

log(µ̂i) = α̂+ β̂xi

For the AIDS data we obtained

log(µ̂i) = −1.9442 + 2.1748x∗i

where x∗i is log(month period).

Typically, the kinds of hypothesis tests that we’ld be interested in
performing are whether our explanatory variable(s) had an effect on the
response variable; that is,

HO : β = 0 versus one of the following:

HA : β 6= 0 (2-tailed test).

HA : β > 0 (right tailed test).

HA : β < 0 (left tailed test).
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Wald Statistics

Maximum likelihood estimates are approximately normally distributed for
large samples (i.e., MLEs are asymptotically normally distributed).

Which means that for “large” samples,

β̂ ≈ N (β, σ2
β̂
)

We can use this to

Construct confidence intervals for parameters.
Test hypotheses.

For a (1− α)100% confidence interval estimate of β:

β̂ ± zα/2ASE

where ASE is the asymptotic standard error of β̂.

For the AIDs example, a 95% confidence interval for β is

2.1748 ± 1.96(.2151) −→ (1.753, 2.596)
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Wald Statistics for Hypothesis Testing

For the hypothesis test of HO : β = 0 versus HA : β 6= 0 (or HA : β > 0
or HA : β < 0),

z =
β̂ − βo
ASE

=
β̂

ASE

where βo is the hypothesized value of β under the null hypothesis (i.e.,
βo = 0).

If the null hypothesis is true, then the statistic z is approximately standard
normal (for large samples)

z =
β̂

ASE
≈ N (0, 1)
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Wald Statistic

An estimated parameter divided by it’s ASE and squared is a “Wald
Statistic”.

z2 =

(

β̂

ASE

)2

≈ χ2
1

z2 has (asymptotically) a chi-squared distribution with df = 1.

Wald statistics are usually provided on computer output, along with
p–values (see SAS output).

Wald statistics can be used to test 2-sided alternatives, while z can
be used to test 1-sided as well as 2-sided alternatives.

AIDS Example:

Ho : β = 0 versus Ho : β 6= 0

“Chi-square” = (2.1748/.2151)2 = (10.11)2 = 102.23, df = 1,
p < .01.
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Likelihood Ratio Test

For this test, we look at the ratio of

The maximum value of the likelihood function over all possible
parameter values assuming that the null hypothesis is true.
The maximum value of the likelihood function over a larger set of
possible parameter values (possible parameters for a “full” or more
general model).

Suppose that we wish to test HO : β = 0.

Let l1 = the maximum value of the likelihood function for the full
model:

log(µi) = α+ βxi

Let l0 = the maximum value of the likelihood function for the model
when HO is true:

log(µi) = α

Model under HO places more restrictions on the set of possible
parameters, soC.J. Anderson (Illinois) Inference & Model Checking 7.7/ 97
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Likelihood Ratio Test Statistic

The Likelihood ratio test statistic equals

−2 log(l0/l1) = −2{log(l0)− log(l1)}
= −2(L0 − L1)

where L0 = log(l0) (and L1 = log(l1)) are the “maximized log-likelihood
functions”.

When l0 = l1 so L0 = L1, the test statistic equals 0.

If HO is true, then the likelihood ratio test statistic is approximately
chi-squared distributed with degrees of freedom equal to df = 1 (for
HO : β = 0).

When the null is false, l0 < l1 (so L0 < L1), the test statistic is > 0.
The larger the statistic, the greater the evidence against the null
hypothesis being true.
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Example using Likelihood Ratio Test Statistic

AIDs example:

HO : β = 0 versus HA : β 6= 0.

−2(LO − L1) = −2(383.2532 − 478.3435) = 190.1806,

which with df = 1 has a very small p–value.

Where to get these values come from?

Under “Criteria For Assessing Goodness of Fit”, SAS/GENMOD
provides the maximized log-likelihood value (see “Log Likelihood”)
Criterion DF Value Value/DF

Deviance 12 17.0917 1.4243
Pearson Chi-Square 12 15.9884 1.3324
Log Likelihood 478.3435

Or using the “type3” option to the model statement:
model count = lmonth / dist=count link=log type3;

C.J. Anderson (Illinois) Inference & Model Checking 9.9/ 97
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. . . and in R

# Fit model with log(month)

aids$log.month ← log(aids$month)
poi2 ← glm(count ∼ log.month,data=aids,

family=poisson(link="log"))

summary(poi2)

# Compare models with and without predictors

anova(poi2)

Df Deviance Resid. Df Resid. Dev

NULL 13 207.272

log.month 1 190.18 12 17.092

# or

lr ← poi2$null.deviance - poi2$deviance
df ← poi2$df.null - rpoi2$df.residual
pval ← 1 - pchisq(lr, df)
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Assessing Model Fit to Data

In assessing whether a model fits the data well (i.e., the model provides a
“good” or accurate description of the data), we should examine/consider

Global Fit Statistics.

Residuals.

Confidence Intervals

Overdispersion.

C.J. Anderson (Illinois) Inference & Model Checking 11.11/ 97
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Global Fit Statistics

The null hypothesis for these statistics is

HO : The model fits the data.

The lack of fit is not statistically large.

Let

i = 1, . . . , N index the levels of the explanatory variable.
yi = observed count for ith level of the explanatory variable.

The Pearson “goodness-of-fit” statistic is

X2 =

N∑

i=1

(yi − µ̂i)
2

µ̂i

The Likelihood ratio “goodness-of-fit” statistic is

G2 = 2
n∑

i=1

yi log(yi/µ̂i)

C.J. Anderson (Illinois) Inference & Model Checking 12.12/ 97
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Distribution of Global Fit Statistics

If

1 The null hypothesis is true,

2 The fitted values are large −→ µ̂i ≥ 5,

3 The number of levels of the explanatory variable(s) is fixed,

Then the sampling distributions of X2 and G2 are approximately
chi-squared with degrees of freedom (or “residual df”) equal to

df = number of counts − number of (unique) model parameters.

If (1) is false (but (2) and (3) hold), then we expect X2 and/or G2 to be
“large” (i.e., far out in the right tail of the proper chi-squared distribution)
and this is evidence against the null hypothesis.

C.J. Anderson (Illinois) Inference & Model Checking 13.13/ 97
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AIDs Example & Global Fit Statistics

For the AIDs example for the model log(µi) = α+ βxi,

Statistic df Value

X2 12 15.99
G2 12 17.09 (R glm gives G2, “Residual deviance”)

Note: N = 14, we have just 1 observation (count) for each quarter (3
month period), and the number of parameters = 2, so

df = 14− 2 = 12

Wonder why SAS and R don’t automatically provide p–values for these
statistics?

C.J. Anderson (Illinois) Inference & Model Checking 14.14/ 97
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Problem with the AIDs Example

Problems with global fit statistics and Poisson regression:
1 Often there are (many) small “cell” counts.

→ In the AIDs data, 6 of the 14 counts are less than 5.
2 The chi-squared approximation for X2 and G2 is based on asymptotic

theory, which means that as sample size increases for a fixed N
(number of levels of the explanatory variable), the approximation
becomes better.

→ If we add observations in the AIDs example, we also increase N ,
the number of levels of the explanatory variable.

Because of these two problems,

X2 and G2 are not good measures of a model’s “badness-” or
“lack-of-fit”

The approximation of the distributions of X2 and G2 by the
chi-squared distribution is bad.

C.J. Anderson (Illinois) Inference & Model Checking 15.15/ 97
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Lung Cancer Example

Table doesn’t increase as add more observations, because the
Explanatory Variables are :

City in Denmark (Fredericia, Horsens, Kolding, Vejle).
Age class (40–54, 55–59, 60–64, 65–69, 70–74, >75).

Of the 24 cells, smallest ones are 2 and 4; that is, 92% are “large”.

Criterion DF Value Value/DF p

Deviance (G2) 20 26.2815 1.3141 .16
Pearson Chi-Square (X2) 20 24.2465 1.2123 .23

C.J. Anderson (Illinois) Inference & Model Checking 16.16/ 97
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Ways to deal with Problem

1 Use small sample methods.

2 “Discretize” or collapse levels of the explanatory variable.

There are two variants of this latter strategy:

1 Sum observed counts and fitted values within the same category of the
collapsed explanatory variable and recompute the test statistics.

2 Sum observed counts within the same category of the explanatory
variable and re-fit the model to the data and using scores for each
category of the explanatory variable (e.g., means, or other).

3 Bayesian methods? (I put a quick little example of how fit models in
SAS/GENMOD)

C.J. Anderson (Illinois) Inference & Model Checking 17.17/ 97
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Grouping Observations

By grouping observations on the basis of the explanatory variable, X2 and
G2 should be better approximated by chi-squared distributions.

By collapsing data, both problems are solved:

1 The observations/counts per level of the explanatory variable
increases.

2 As you increase the number of observations per category/level of the
explanatory variable, the number of levels of the explanatory variable
is constant (i.e., N is fixed).

Will this strategy work for the AIDs example?

No, because of the nature of the study. If you collect more data, you
necessarily increase N .

Collapsing strategies work with the horseshoe crab example (Agresti,
1996).

C.J. Anderson (Illinois) Inference & Model Checking 18.18/ 97
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Collapsing Horseshoe Crab Data

Before collapsing, there are 66 different widths of female crabs (many with
very small counts).

8 categories of widths were used and both of the two of the collapsing
strategies were used.

Deciding on categories for explanatory variable:

Often just take equal spacing (as done in horseshoe example, i.e., 1
cm) — easy, works well when observations are equally spread out over
the range of the explanatory variable.

Each of categories should have µ̂i ≥ 5.

C.J. Anderson (Illinois) Inference & Model Checking 19.19/ 97
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Method I: Fit Model then Collapse

Both the observations and fitted values from the model (fit to the
uncollapsed data) within the same width categories were summed.
Using the summed counts and fitted values, the model test statistics were
recomputed:

Statistic df Value p–value

X2 6 6.5 —
G2 6 6.9 —

Note:
df = (# of categories)−(# of parameters)= 8− 2 = 6.

C.J. Anderson (Illinois) Inference & Model Checking 20.20/ 97



Inference Global Residuals CIs Overdispersion Bully ZIP SAS/R Fitting GLMS Likelihood function “Deviance” Summary

Method II: Collapse then Fit Model

Sum the observed counts within each of the width categories and re-fit the
model to collapsed data using some scores for the width categories (mean
width within category).
With this method, each observation within a category is treated as if it has
the same width. (Method II is “easier” than Method I, but Method II is
also “cruder” than Method I).

The Poisson regression with log link and the offset t = log(number of cases
per width category):

log(µ̂i/t) = −3.535 + .173xi

and the estimated model from un-collapsed data was

log(µ̂i) = −3.305 + .164xi

The fit statistics for the model fit to the collapsed data:

Statistic df Value p–value
X2 6 6.5 .37
G2 6 6.9 .33

C.J. Anderson (Illinois) Inference & Model Checking 21.21/ 97
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Method II: continued

Fitted counts look pretty close to the observed counts

Mean Number Number Fitted
Width Width Cases Counts Count
< 23.25 22.69 14 14 20.5
23.25–24.25 23.84 14 20 25.1
24.25–25.25 24.77 28 67 58.9
25-25–26.25 25.84 39 105 98.6
26.25–27.25 26.79 22 63 65.6
27.25–28.25 27.74 24 93 84.3
28.25–29.25 28.67 18 71 74.2
> 29.25 30.41 14 72 77.9

Conclusion: Both Methods I & II yield indicate that the Poisson regression model
looks pretty good for these data.

C.J. Anderson (Illinois) Inference & Model Checking 22.22/ 97
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Residuals

Pearson Residuals are standardized differences between observed counts
and fitted values:

Pearson residual =
(observed − fitted)
√

V̂ar(observed)

ei =
yi − µ̂i√

µ̂i

Notes:

The estimated standard deviation of a fitted value in Poisson
regression is the square root of the fitted value.
∑

i e
2
i = X2

Observations with larger Pearson residuals make larger contributions
to X2.

C.J. Anderson (Illinois) Inference & Model Checking 23.23/ 97
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Residuals from AIDs example

Month # Deaths Fitted Pearson Contribution
xi yi Value residual to X2

1 0 .14 -.38 .14
2 1 .65 .44 .19
3 2 1.56 .35 .12
4 3 2.92 .05 .00
5 1 4.74 -1.72 2.95
6 4 7.05 -1.15 1.32
7 9 9.86 -.27 .07
8 18 13.17 1.33 1.77
9 23 17.02 1.45 2.10

10 31 21.40 2.07 4.30
11 20 26.33 -1.23 1.52
12 25 31.82 -1.29 1.46
13 37 37.87 -1.14 .02
14 45 44.49 .08 .01

C.J. Anderson (Illinois) Inference & Model Checking 24.24/ 97
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Residuals from AIDs example (plot)

The largest residual e10 = 2.07, with the next largest e5 = −1.72, which taken
together contribute 4.30 + 2.95 = 7.25 to X2 for the model, which is about 45%
of X2 = 15.99.

C.J. Anderson (Illinois) Inference & Model Checking 25.25/ 97
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Adjusted Residuals

When a model fits data, the Pearson residuals should be approximately
normally distributed with mean 0 but the variance is slightly less than 1.

(yi − µ̂i) tends to be smaller than (yi − µi), because sample data are used
to obtain µ̂i.

Adjusted residual =
Pearson residual

Pearson residual’s standard error

=
ei

√

(1− hi)
=

(yi − µ̂i)
√

µ̂i(1− hi)

where hi is “leverage”, which is a measure of how much an observation
potentially influences the fit of the model.

Adjusted residuals are

Approximately N (0, 1) when the model holds.
Good for finding “large” residuals.

C.J. Anderson (Illinois) Inference & Model Checking 26.26/ 97
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AIDs Adjusted Residuals

Month # Deaths Fitted Pearson Adjusted
xi yi Value residual Residual
1 0 .14 -.38 -.39
2 1 .65 .44 .46
3 2 1.56 .35 .38
4 3 2.92 .05 .05
5 1 4.74 -1.72 -1.86
6 4 7.05 -1.15 -1.24
7 9 9.86 -.27 -.29
8 18 13.17 1.33 1.41
9 23 17.02 1.45 1.53
10 31 21.40 2.07 2.19
11 20 26.33 -1.23 -1.32
12 25 31.82 -1.29 -1.33
13 37 37.87 -1.14 -1.16
14 45 44.49 .08 .10
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Confidence intervals for fitted values

Just as in normal linear regression, we can put confidence intervals around
out Poisson regression fitted values.

β̂ ∼ N (β,Σβ̂).

The linear predictor is a linear combination of β̂:

x′

iβ̂

e.g., For one explanatory variable,

x′

iβ̂ = (1, xi)

(
α̂

β̂

)

= α̂+ β̂xi

Therefore the linear predictor is normally distributed,

x′

iβ̂ ∼ N (x′

iβ, σ
2)

where σ2 = x′

iΣβ̂xi.

C.J. Anderson (Illinois) Inference & Model Checking 28.28/ 97
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Confidence intervals for Regression

Since the linear predictor is normal, then a (1− α)100% confidence
interval for log(µi) is

log(µ̂i)± zα/2
√
σ2

A (1− α)100% confidence interval for µi is

exp
[

log(µ̂i)± zα/2
√
σ2
]

On the SAS/GENMOD output under the observation statistics,
UPPER and LOWER correspond to the upper and lower ends of
confidence intervals for µi.

In R. . .

C.J. Anderson (Illinois) Inference & Model Checking 29.29/ 97
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Confidence intervals for Regression

# to get 95% bands on model fitted values

test ← predict(mod.poi1, newdata=NULL,

type=c(‘‘response’’),

se.fit=TRUE)

names(test)

upper ← test$fit + 1.96*test$se.fit
lower ← test$fit - 1.96*test$se.fit

C.J. Anderson (Illinois) Inference & Model Checking 30.30/ 97
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AIDs Confidence Bands for Regression

C.J. Anderson (Illinois) Inference & Model Checking 31.31/ 97
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Overdispersion

Observed count data often show greater variability than would be expected
if the data were really from a Poisson (or binomial) distribution.
If data come from a Poisson distribution, then mean = variance
But often we find that mean < variance

This situation is referred to as overdispersion.

Most common causes of overdispersion: Heterogeneity (and lack of
independence).

In Poisson regression, we assume that the randomness of observations on
individuals with the same value on the explanatory variable(s) can be
described by the same Poisson distribution (i.e., the same mean).

C.J. Anderson (Illinois) Inference & Model Checking 32.32/ 97
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Example of Overdispersion

Consider the example of the number of violent incidences of individuals with
mental illnesses who had been treated in ER of a psychiatric hospital.

If the Poisson model for counts is correct, then for each patient with the
same age, concern score, and history of violent incidences, the expected
count should equal

µ̂i = ti exp{α̂+ β̂1agei + β̂2concerni + β̂3historyi}

where ti is the offset (the number of days the individual was in the
community during the 6 month period of the study).

And the estimated probability of observing counts equal to y = 0, 1, 2, . . . ,
should be given by

P̂ (Yi = y) =
e−µ̂i µ̂y

i

y!

However, the observed variability is greater than µ̂i.
C.J. Anderson (Illinois) Inference & Model Checking 33.33/ 97
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Overdispersion: When to be Concerned

When the random component is a distribution where the mean and
variance are related.

In particular, overdispersion is

a concern with Poisson: σ2 = µi.

a concern with Binomial: σ2 = Nµi(1− µi).

not a concern with Normal: σ2 is not a function of µi.

C.J. Anderson (Illinois) Inference & Model Checking 34.34/ 97
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Detecting Overdispersion

For grouped data, you can compute the mean and sample variance of the
counts. If the Poisson distribution is a good model for the data, then
mean = variance, but if

sample mean < sample variance −→ overdispersion

For an example, see Agresti. He illustrates this for the crab data.

For grouped (e.g., crab data grouped into 8 categories instead of 66
different values of width) or ungrouped data (e.g., AIDs and violent
incidence examples), if the Poisson model is a good one, then Pearson’s
X2 divided by df should equal 1, but if

X2/df > 1 −→ overdispersion

C.J. Anderson (Illinois) Inference & Model Checking 35.35/ 97
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Examples: Detecting Overdispersion

X2/df > 1 −→ overdispersion

Data Set df X2 X2/df

Horseshoe crabs 64 174.3 2.7
Deaths due to AIDs 12 15.99 1.33
Violent incidences 793 12711.79 16.03
Hodgkin’s disease 38 9956.24 276.94

C.J. Anderson (Illinois) Inference & Model Checking 36.36/ 97
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Implication of Overdispersion

& How to deal with it.

If there is extra variation in the data, then estimates of variances and
standard errors for the estimated model parameters are too small. When
estimated standard errors are too small, test statistics for testing
hypotheses such as Ho : β = 0 are too big (i.e., “inflated”).

We’ll discuss two ways to deal with this.

Adjust estimated standard errors — When you’re primarily concerned
with testing hypotheses regarding parameter estimates.

Use an alternative distribution as your random component (i.e., model
the extra variability) — When you’re concerned with prediction.

C.J. Anderson (Illinois) Inference & Model Checking 37.37/ 97
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Adjusting estimated standard errors

An estimate of the extra variance is Pearson’s X2 for the model divided by
it’s degrees of freedom.

X2/df

To adjust the ASE for parameter estimates we multiply them by

Adjusted ASE =
√

X2/df(ASE)

Example: Violent incidences — multiply ASE by
√
16.03 = 4.00.

Est. Uncorrected Corrected
Coefficent Param ASE z p-value ASE z p-value
Intercept -3.410 .0690 -49.29 < .0001 .2800 -12.31 < .0001
Age -.045 .0023 -19.69 < .0001 .0091 -4.92 < .0001
Concern .083 .0075 11.20 < .0001 .0300 2.80 < .0051
History .420 .0380 11.26 < .0001 .0150 2.81 < .0051

Same conclusion (the effects are very strong in this case).
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Modeling the Extra Variability

When you’re concerned with prediction (as in the violent incidence of
individuals with mental illnesses), simply adjusting ASE for hypothesis
testing is not enough.

Model the extra variability: µ̃i (the parameter of the Poisson distribution) is
considered a random variable. Even after taking into account the linear
predictor, there is still some variability in µ̃i not accounted for, i.e.,

µ̃i = ti exp{α+
∑

j

βjxij}ǫi

where ǫi > 0 is an unobserved random variable, and ti is the offset (if there
is one).

The probability distribution assumed for ǫi is usually a Gamma distribution
(for mathematical convenience) with

E(ǫi) = 1 and Var(ǫi) = 1/φ

So,. . .
C.J. Anderson (Illinois) Inference & Model Checking 39.39/ 97
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Gamma Distributions with µ = 1

C.J. Anderson (Illinois) Inference & Model Checking 40.40/ 97
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Modeling the extra variability

E(µ̃i) = E(ti exp{α+
∑

j

βjxij}ǫi) = ti exp{α+
∑

j

βjxij}

and
Var(µ̃i) = µ2

i /φ

and the variance of observed counts µi + µ2
i /φ.

If µ̃i is known, then the distribution of counts yi would be Poisson with
parameter µ̃i.

Since µ̃i is not known and is a random variable, the distribution for yi is a
Negative Binomial Distribution.
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Negative Binomial Distribution
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vs Poisson Distribution
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Example: Modeling the extra variability

For the violent incidents example, when the negative binomial distribution
is used as the random component of the GLM, the following estimated
parameters are obtained:

Coefficient Estimate ASE z p–value
Intercept -3.5500 .26200 -13.55 < .0001
Age -.0459 .00799 -5.74 < .0001
Concern .0962 .03090 3.12 .0029
History .5360 .11550 3.45 .0008

which is similar to before, but the probability distribution is much better
approximated by the Negative Binomial.
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Improvement when Modeling the extra variability

C.J. Anderson (Illinois) Inference & Model Checking 45.45/ 97



Inference Global Residuals CIs Overdispersion Bully ZIP SAS/R Fitting GLMS Likelihood function “Deviance” Summary

Overdispersion and SAS/GENMOD

Built in MODEL options

From the SAS/GENMOD documentation:

SCALE = number

PSCALE sets scaling parameter equal to 1 during estimation but
standard errors and statistics are adjusted using Pearson’s X2/df .

DSCALE same as PSCALE but uses G2/df .

Using Negative Binomial distribution as the random component.

model count = < linear predictor > / link=log dist=Negbin ;
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Overdispersion Example from Lindsey

(1997); Applying Generalized Linear Models

The data consist of counts of T4 cells/mm in blood samples from 20
patients in remission from Hodgkin’s disease and 20 other patients in
remission from disseminated malignancies:

Hodgkin’s Non-Hodgkin’s
Disease Disease

396 568 375 375
1212 171 752 208
554 1104 151 116
257 435 736 192
295 397 315 1252
288 1004 657 700
431 795 440 771

1621 1378 688 426
902 958 410 979

1283 2415 377 503

Question: Is the average count of T4 cells/mm the same or different for patients
in remission from Hodgkin’s disease as the average count from those in remission
from disseminated malignancies?
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Possible Model: Poisson regression

Hodgkin’s disease example (continued)

Random component: Y = number of T4 cells/mm. Assume Poisson
and if this doesn’t fit, we’ll try Negative Binomial.

Systematic component: In this example, the explanatory/predictor
variables is discrete so we’ll define

X =

{
0 if non-Hodgkin’s
1 if Hodgkin’s disease

So linear predictor is
α+ βx

Link function: log.

log(µy) =

{
α if non-Hodgkin’s
α+ β if Hodgkin’s disease
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Possible Model: Poisson regression

Hodgkin’s disease example (continued)

Fit of this model to data yields
Model df G2 p-value X2 p-value
Poisson regression 38 9956.23 < .001 10523.75 < .001
Negative binomial 38 42.41 .29 40.26 .37

Parameter Estimates from the two models:
Poisson Distribution Negative Binomial

Parameter df Estimate ASE Wald Estimate ASE Wald
α 1 6.2560 .0098 407935 6.2560 .1365 2101.53
β 1 .4572 .0125 1333.90 .4572 .1929 5.62

Note: dispersion parameter = .3706 and ASE = .0787 (95% CI: 0.2163
0.5248). This was estimated by MLE.
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Outline of Bully Example

The Problem

A little exploratory analysis.

Initial Modeling

Revised models

Conclusion

Zero inflated models (something new)
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The Problem

The data are from Espelage, D.L., Holt, M.K., & Henkel, R.R.
(2004). Examination of peer-group contextual effects on aggression
during early adolescence. Child Development, 74, 205–220.

Two ways to measure bullying

Self Report: 9 item Illinois Bully Scale (Espelage & Holt, 2001).
Peer nominations: Kids list everyone who they view as a bully. The
total number of nominations a child receives is a measure of bullying
that child’s bullying.

Peer nominations more “objective” than self report and it’s getting
harder to obtain IRB approval of peer nominations.

Model peer nominations (a count) with self report measure (bully
scale) as a predictor variable.. . . ignoring clustering. . .
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Exploratory Analysis
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The Predictor Variable
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The Predictor Variable
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Relationship Between the Measures
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We Know So Far That. . .

Both variables are highly positively skewed.

There are a lot of kids who did not receive any peer nominations.

There does appear to be a relationship between peer nominations and
scale score.

Mean peer nominations is much smaller than the variance:

2.49 < 41.26
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Initial Modeling

Random Component:
Yij = the number of nominations received by kid i in peer group j.
Poisson distribution.

Linear Predictor:

β0 + β1(bullysc)ij = β0 + β1xij

The Link is the Log, the canonical link.

The initial models is a standard Poisson regression model

E(Yij) = µij = exp[β0 + β1xij ]

where

P (Yij = y) =
e−µijµy

ij

yij!
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Fit of Poisson Regression Model

Model was fit and then grouped to “look” at fit.
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Fit of Marginal Distribution
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Revised Model

To deal with the overdispersion, we’ll change the random component to
Negative Binomial:

Random= Negative Binominal
Linear predictor= β0 + β1xij .
log link
Our next model is

Yij = µijǫij = exp[β0 + β1xij]
︸ ︷︷ ︸

Poisson

ǫij
︸︷︷︸

Gamma
where

E(ǫij) = 1
var(ǫij) = 1/φ (φ is the “dispersion” parameter).
E(Yij |xij) = µij = exp[β0 + β1xij ]
var(Yij |xij) = µij + µ2

ij/φ
and

P (Yij = y) =
Γ(y + φ)

y!Γ(φ)

(
φ

φ+ µij

)φ(
µij

φ+ µij

)y
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Fit Statistics & Parameter Estimates

df = 289 for all of these

Dist Link G2 X2 X2/df AIC BIC

Poisson log 1774.60 2977.94 10.30 2160 2168
NegBin log 244.08 351.13 1.22 998 1010

Poisson Negative Binomial
Parm est. se Wald p est. se Wald p

β0 −0.66 0.09 55.87 < .01 −1.19 0.36 11.30 < .01
β1 0.81 0.04 540.05 < .01 1.09 0.20 30.66 < .01
1/φ — 3.50 0.44 —

For interpretation,

exp(.81) = 2.25 and exp(1.09) = 2.98
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Fit of Negative Binomial Model to Data
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Fit of Marginal Distribution
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Change of the Link Function

The relationship between Yij and xij looks like a straight line. . . The New
GLM:

Negative Binomial

β0 + β1xij
Identity Link function

This model is
Yij = µijǫij = (β0 + β1xij)

︸ ︷︷ ︸

Poisson

ǫij
︸︷︷︸

Gamma
E(ǫij) = 1

var(ǫij) = 1/φ

E(Yij |xij) = µij = β0 + β1xij
and

P (Yij = y) =
Γ(y + φ)

y!Γ(φ)

(
φ

φ+ µij

)φ( µij

φ+ µij

)y

C.J. Anderson (Illinois) Inference & Model Checking 64.64/ 97



Inference Global Residuals CIs Overdispersion Bully ZIP SAS/R Fitting GLMS Likelihood function “Deviance” Summary

Fit Statistics & Parameter Estimates

df = 289 for all of these

Dist Link G2 X2 X2/df AIC BIC

Poisson log 1774.60 2977.94 10.30 2160 2168
NegBin log 244.08 351.13 1.22 998 1010
NegBin Identity 244.33 337.09 1.17 992 1003

Log Link Identity Link
Parm est. se Wald p est. se Wald p

β0 −1.19 0.36 11.30 < .01 −2.64 0.65 16.44 < .01
β1 1.09 0.20 30.66 < .01 3.07 0.57 29.50 < .01
1/φ 3.50 0.44 — 3.35 0.43

For interpretation, a one unit change in bully scale leads to

exp(1.09) = 2.98 times or 3.07 more nominations
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Fit of Negative Binomial Model w/ Identity
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Fit of Marginal Distribution w/ Identity
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Conclusion

Conclusion:

The bully scale can reasonably be used lieu of the peer nominations(?)

Support from this comes from

The similarity of the marginal distributions for the two measures (both
positively skewed).
Goodness of fit of the negative binomial regression with identity link
function.

Qualifications (i.e., more to be done):

Add in other variables known to be related to bullying (e.g., gender) to
try to account for extra variability (i.e, systematic vs random).
More modeling that takes into account peer groupings (i.e., see
whether there are “errors” or systematic differences between peer
groups).
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Zero Inflated Models

Models for situations where there might be two underlying types or
groups: one group that follows the regression model and the other that
just gives 0’s.

Recommended supplemental reading:

Long, J.S. (1997). Regression Models for Categorical and Limited
Dependent Variables.

Donald Erdman, Laura Jackson, Arthur Sinko (2008). Zero-Inflated
Poisson and Zero-Inflated Negative Binomial Models Using the
COUNTREG Procedure (Paper 322-2008). SAS Institute Inc., Cary,
NC.
−→ PROC COUNTREG is in SAS v9.2

Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized Latent

Variable Modeling: Multilevel, Longitudinal and Structural Equation

Models. NY: Chapman & Hall
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Basic Zero Inflated Model (e.g., “ZIP”)

The basic model is essentially a latent class type model of the form

P (Yij = y|xij) =
{

π + (1− π)P (0|xij) for y = 0
(1− π)P (y|xij) for y > 0

where

π = the probability of being in the “zero only” type or class.
P (0|xij) and P (y|xij) are based on some model, such as Poisson or
Negative Binomial regression.

ZIP model is a Zero Inflated Poisson usually with a log link:

P (Yij = y|xij) =
{

π + (1− π) exp(−µij) for y = 0

(1− π)
exp(−µij)µ

y

ij

y! for y > 0
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ZIP Model (continued)

P (Yij = y|xij) =
{

π + (1− π) exp(−µij) for y = 0

(1− π)
exp(−µij )µ

y

ij

y! for y > 0

Mean

E(Yij |xij) = (0× π) + µij × (1− π) = µij − µijπ

Variance:
var(Yij |xij) = µij(1− π)(1 + µijπ)

Note that if π = 0, we simply have a standard Poisson regression with
log link.
Extending the ZIP model by noting that class membership is
dichotomous, so we can do a logistic regression (or other model for
binary data) on the probability of class membership, e.g., a logit model,

log

(
πij

1− πij

)

= γo + γ1z1ij + . . .+ γqzqij
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ZIP and Bully Nominations
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Extending the ZIP

Since class membership is dichotomous, we can do a logistic
regression (or other model for binary data) on the probability of class
membership

For example,

log

(
πi

1− πi

)

= γo + γ1z1i + . . . + γqzqi

For our Bully nominations, we could try

log

(
πij

1− πij

)

= γo + γ1(bullyscale)ij
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Extending the ZIP

A comparison of how well various ZIP models fit the data:

Model
Dist. link for π df G2 X2 AIC BIC

Poi log none 288 1579.04 814.82 1585 1596
Poi log logit 287 1561.26 824.00 1569 1584
Poi Ident logit 287 1553.76 825.90 1562 1576
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ZIP Model Parameter Estimates

and How to interpret them:

ZIP w/o model for π ZIP With Logit model for π
parm est se Wald p est se Wald p
β0 0.48 0.10 0.28 < .01 0.50 0.10 0.30 < .01
β1 0.60 0.04 0.52 < .01 0.60 0.04 0.52 < .01
γ0 0.21 0.12 −0.03 .09 1.50 0.35 0.82 < .01
γ1 −0.77 0.20 −1.16 < .01

ZIP w/o model for π:

exp(0.60) = 1.82 and π̂ =
exp(0.21)

1 + exp(0.21)
= .55

ZIP With Logit model for π:

exp(0.60) = 1.82 and π̂ =
exp(1.50− 0.77(bullysc)ij)

1 + exp(1.50− 0.77(bullysc)ij)

Note that exp(−.77) = 0.46.
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ZIP w/ logit model and Bully Nominations
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Comparing all Fitted
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Comparing all Fitted

C.J. Anderson (Illinois) Inference & Model Checking 78.78/ 97



Inference Global Residuals CIs Overdispersion Bully ZIP SAS/R Fitting GLMS Likelihood function “Deviance” Summary

Mix and Match

You can also have a zero inflated Negative Binomial model.

You can specify a model other than logit for the mixing probability.

You can do all this as a multi-level (random effects) model.

Change link functions and/or distributions
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SAS: Data

data bullynom;

input BULLYSC BULLYNM;

datalines;

1.56 0.00

1.56 0.00

1.11 0.00

1.56 0.00

1.22 4.00
...

3.22 0.00

1.22 0.00

1.89 0.00

run;
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SAS for Models

/* Poisson Regression */

proc genmod data=bullynom;

model bullynm = bullysc / link=log dist=poi type3;

output out=genmodpoi pred=fitpoi upper=uppoi

lower=lopoi stdreschi=respoi;

title1 ’Poisson Regression’;

/* Negative Binomial Regression */

proc genmod data=bullynom;

model bullynm = bullysc / link=log dist=negbin type3 ;

output out=genmodnb pred=nbfit

upper=nbup lower=nblo stdreschi=resnegbin;

title1 ’Negative Binomial’;
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SAS: models

Poisson Regression with identity link
proc genmod data=bullynom;

model bullynm = bullysc / link=identity dist=poi type3;
run;
Poisson Regression with log link
proc genmod data=bullynom;

model bullynm = bullysc / link=log dist=poi type3;
run;
Zero Inflated Poission Regression with predictor of inflation probability
proc genmod data=bullynom;

model bullynm = bullysc / link=log dist=zip type3;
zeromodel bullysc / link=logit;

run;
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R: data

The data are in file bully data.txt
BULLYSC BULLYNM

1.56 0.00

1.56 0.00

1.11 0.00

1.56 0.00

1.22 4.00
...

3.22 0.00

1.22 0.00

1.89 0.00

bully ← read.table("bully data.txt",header=TRUE)
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R: models

A standard poisson with log link:

summary(mod1 ← glm(nom ∼ bsc, data=bully, family=poisson))

A negative binomial with log link:
library(MASS)

summary(mod2 ← glm.nb(nom ∼ bsc, data=bully))

Note that “disperson” in R output is φ; whereas, SAS gives 1/phi.

A zip model with predictors for probability
library(pscl)

summary(mod4 ← zeroinfl(nom ∼ bsc | bsc, data = bully))
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SAS using NLMIXED – skip?

proc nlmixed data=bullynom;
/* Some starting values */

parm beta0= -2.4076 beta1= 1.0168 a0=1 a1=.01;

/* linear predictor for the inflation probability */

linpinf = a0 + a1*bullysc;

/* infprob = inflation probability for zeros * /

/* = logistic transform of the linear predictor*/

infprob = 1/(1+exp(-linpinf));

/* Poisson mean */

mu = exp( beta0 + beta1*bullysc);
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SAS v 9.1 using NLMIXED (continued)

/* Build the ZIP log likelihood */

if bullynm=0 then

ll = log(infprob + (1-infprob)*exp(-mu));

else ll = log((1-infprob)) - mu + bullynm*log(mu)

- lgamma(bullynm + 1);

model bullynm ˜ general(ll);

title ’Zero Inflated Poisson regression’;
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Fitting GLMS

Important for understanding inferential procedures.

Unlike normal (ordinary) regression, there is no “closed” form equation
from which we can obtain estimates of model parameters. We much use
some sort of iterative algorithm.

Two commonly used algorithms are

1 Fisher scoring

2 Newton-Raphson

For Binomial logistic regression and Poisson log-linear models, Fisher
scoring simplifies to Newton-Raphson.

SAS/GENMOD uses Newton-Raphson with ridge stabilization; whereas,
R/glm uses Fisher. Should be same when use canonical link but . . . .
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Newton-Raphson

Newton-Raphson is an iterative algorithm

It requires initial estimates (educated guesses) for the parameter
estimates.

On each cycle the estimates are “up-dated” by approximating the
log-likelihood function by a simpler polynomial function that has the
shape of a concave parabola.

The cycles are repeated until the fitted values (parameter estimates)
change less than some specified criterion (a very small number).

Newton-Raphson is sometimes referred to as,“iteratively reweighted least
squares”.

Because it is a type of weighted least squares, the weights change from
cycle to cycle and depend on variability (which is not constant with means
in Binomial & Poisson distributions).

C.J. Anderson (Illinois) Inference & Model Checking 88.88/ 97



Inference Global Residuals CIs Overdispersion Bully ZIP SAS/R Fitting GLMS Likelihood function “Deviance” Summary

Statistic inference & the Likelihood function

We can now consider each of the procedures we discussed for testing
hypotheses about model parameters and see what information each of
them uses (and therefore how they differ):

1 Wald tests.

2 Likelihood ratio tests.

3 Efficient score tests.

For purpose of illustration, consider the following log-likelihood function
for the parameter β in a Poisson regression.
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Wald Test

Only uses information about the log-likelihood function at the maximum
likelihood estimated of β̂.
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Efficient Score Test

Uses information about the slope of the function at the null hypothesis
value of β = 0.
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Efficient Score Test (continued)

It compares the slope at β = 0 to the slope at the maximum
likelihood estimate, which is 0 (i.e., the derivative of the function
equals 0 at the MLE for β).

The further the MLE of β is from zero, the greater the slope at β = 0
tends to be.

The score statistic equals the square of the ratio of the slope
(derivative) at β = 0 to its ASE.

The score statistic has an approximate chi-squared distribution with
df = 1.

You (usually) don’t have to estimate the model to perform this test.

Examples include CMH for conditional independence.

This test can be performed even when β̂ is infinite (whereas the Wald
test cannot).
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Likelihood Ratio
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“Deviance”

This is an analog to regression models decomposition of sum of squares.

Let

LS equal the maximum of the log-likelihood function of the most
complex model; that is, the model with as many parameters as there
are observations — the “Saturated Model”.

LM equal the maximum of the log-likelihood function of a simpler
model (of interest).

The deviance compares the log-likeihood value for the saturated and some
simpler model.

Deviance = −2(LM − LS)

For Poisson loglinear (regression) models and Binomial logit models,

Deviance = G2
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Deviance

So, for lots of GLMs, Deviance has an approximate chi-squared distribution
. . . and for some GLMs, it doesn’t — which is another good reason why
programs that fit GLMs don’t automatically print out p–values.

When Deviance has an approximate chi-squared distribution, the
“residual” degrees of freedom equal

df = # responses−# nonredundant model parameters

Deviance Residuals components of Deviance (and for binomial logit and
Poisson regression G2). They are alternatives to Pearson residuals. These
also can be adjusted so that they are approximately N (0, 1).

Deviance & Model Comparison — a very useful property.
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Deviance & Model Comparison

Suppose that we have two models, M0 and M1, where M0 is a
special case of M1 (i.e., they are “nested”).
Assuming that the more complex model M1 fits the data, the
likelihood ratio test that the simpler model fits (i.e., that you don’t
need the terms that are in M1 but are not in M0) is
-.2in

−2(L0 − L1) = −2(LO − LS)− {−2(L1 − LS)}
= Deviance0 − Deviance1

= G2
O = G2

1

with degrees of freedom
df = df0 − df1

where df0 and df1 are the residual df ’s for models M0 and M1,
respectively. Equivalently, degrees of freedom equal the number ofC.J. Anderson (Illinois) Inference & Model Checking 96.96/ 97
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Summary

GLM theory unifies important models for continuous and discrete
responses.

Some common models as GLMs
Random Link Systematic
Component Function Component Model

Normal Identity Continuous Regression
Normal Identity Categorical ANOVA
Normal Identity Mixed ANCOVA
Binomial Logit Mixed Logistic regression
Poisson Log Mixed Loglinear
Multinomial Generalized

Logit Mixed Multinomial response

The next section of the course will cover logistic regression, loglinear
models, and multinomial response models in more detail.
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