Three-Way Tables

Edps/Psych/Soc 589

Carolyn J. Anderson

Department of Educational Psychology
ILLINOIS
(c)Board of Trustees, University of Illinois

$\sqrt{3}$ Outline

- Types of association
- Marginal \& Partial tables.
- Marginal \& Conditional odds ratios.
- Marginal \& Conditional Independence/Dependence.
- Marginal Independence and Conditional Dependence.
- Marginal Dependence and Conditional Independence.
- Marginal and Conditional Dependence.
- Homogeneous association.
- Inference for Large Samples.
- Cochran-Mantel-Haenszal tests - Conditional independence.
- Estimating common odds ratio.
- Breslow-Day statistic - Testing homogeneity.
- Comments.
- Practice
$\sqrt{5}$ Examples of 3-Way Tables
- Smoking \times Breathing \times Age.
- Group \times Response \times Z (hypothetical).
- Boys Scouts \times Delinquent \times SES (hypothetical).
- Cal graduate admissions \times gender \times Department.
- Supervisor Job satisfaction \times Worker Job satisfaction \times Management quality.
- Race \times Questions regarding media \times Year.
- Employment status \times Residence \times Months after hurricane Katrina.

$\sqrt{3-W a y}$ Contingency Table

Slices of this table are "Partial Tables".
There are 3-ways to slice this table up.

- K Frontal planes or $X Y$ for each level of Z.
- J Vertical planes or $X Z$ for each level of Y.
- I Horizontal olanes or $Y Z$ for each level of X

$\sqrt{ } \sqrt{ }$ Partial Tables \& Marginal Tables

e.g., $X Y$ tables for each level of $Z \ldots$

The Frontal planes of the box are $X Y$ tables for each level of Z are Partial tables:

Sum across the K levels of Z Yields the following Marginal Table

where $n_{i j+}=\sum_{k=1}^{K} n_{i j k}$

Conditional or "Partial" Odds Ratios

Notation:

$$
\begin{aligned}
n_{i j k} & =\text { observed frequency of the }(i, j, k) \text { th cell. } \\
\mu_{i j k} & =\text { expected frequency of the }(i, j, k) \text { th cell. } \\
& =n \pi_{i j k}
\end{aligned}
$$

Conditional Odds Ratios are odds ratios between two variables for fixed levels of the third variable.
For fixed level of Z, the conditional $X Y$ association given k th level of Z is

$$
\theta_{X Y(k)}=\frac{\mu_{11 k} \mu_{22 k}}{\mu_{12 k} \mu_{21 k}} \quad \& \text { more generally } \quad \theta_{i i^{\prime}, j j^{\prime}(k)}=\frac{n_{i j k} n_{i^{\prime} j^{\prime} k}}{n_{i^{\prime} j k} n_{i j^{\prime} k}}
$$

Conditional odds ratios are computed using the partial tables, and are sometimes referred to as measures of "partial association". If $\theta_{X Y(k)} \neq 1$, then variables X and Y are "Conditionally associated".

$\sqrt{3}$ Marginal Odds Ratios

are the odds ratios between two variables in the marginal table.
For example, for the $X Y$ margin:

$$
\mu_{i j+}=\sum_{k=1}^{K} \mu_{i j k}
$$

and the "Marginal Odds Ratio" is

$$
\theta_{X Y}=\frac{\mu_{11+} \mu_{22+}}{\mu_{12+} \mu_{21+}} \quad \& \text { more generally } \quad \theta_{i i^{\prime}, j j^{\prime}}=\frac{\mu_{i j+} \mu_{i^{\prime} j^{\prime}+}}{\mu_{i^{\prime} j+} \mu_{i j^{\prime}+}}
$$

With sample data, use $n_{i j k}$ and $\hat{\theta}$.

Marginal odds ratios may not equal the partial (conditional) odds ratios.

$\sqrt{5}$ Example of Marginal vs Partial Odds Ratios

These data are from a study reported by Forthofer \& Lehnen (1981) (Agresti, 1990). Measures on Caucasians who work in certain industrial plants in Houston were recorded.
Response/outcome variable: breathing test result (normal, not normal).
Explanatory variable: smoking status (never, current).
Conditioning variable: age Marginal Table (ignoring age):

Smoking	Test Result		
Status	Normal	Not Normal	
Never	741	38	779
Current	927	131	1058
	1668	169	1837

Marginal odds ratio: $\hat{\theta}=2.756$

$$
H_{O}: \theta=1 \text { vs } H_{A}: \theta \neq 1-G^{2}=32.382, d f=1, \& p \text {-value }<.001 .
$$

$\sqrt{3}$ Example: Partial Tables

$$
\text { Age }<40
$$

Smoking	Test Result			
Status	Normal	Not Normal		$\hat{\theta}$
Never	577	34	611	$G^{2}=2.418$
Current	682	57	739	p-value $=.115$

Age 40-59
Smoking \quad Test Result

	$\hat{\theta}$	$\hat{\theta}=12.38$		
Status	Normal	Not Normal		
Never	164	4	168	$G^{2}=45.125$
Current	245	74	319	p-value $<.001$

Compare these odds ratios with the marginal odds ratio: $\hat{\theta}=2.756$

$\sqrt{5}$ Marginal and Conditional Associations

- Independence $=$ "No Association".
- Dependence =" Association".
- Marginal Independence means that $\theta_{X Y}=1$
- Marginal Dependence means that $\theta_{X Y} \neq 1$
- Conditional Independence means that $\theta_{X Y(k)}=1$ for all $k=1, \ldots, K$.
- Conditional Dependence means that $\theta_{X Y(k)} \neq 1$ for at least one $k=1, \ldots, K$.
- Marginal independence does not imply conditional independence.
- Conditional independence does not imply marginal independence.

Four Situations

Situation	Marginal	Conditional	Comment
1	Independence	Independence	Not interesting
2	Independence	Dependence	"Conditional Dependence"
3	Dependence	Independence	"Conditional Independence"
4	Dependence	Dependence	"Conditional Dependence"

Conditional dependence includes a number of different cases, which we have terms to refer to them:

- Simpson's paradox.
- Homogeneous association.
- 3-way association.

$\sqrt{ }$ Marginal Independence/Conditional Dependence

Marginal Table	Response				
	Group	yes	no		$\theta=1$
	A	30	30	60	$\log (\theta)=0$
	B	30	30	60	

Partial Tables:

$$
\begin{aligned}
& Z=1 \\
& \begin{array}{l}
\theta=1 / 9 \\
\log (\theta)=-2.197
\end{array} \\
& Z=2 \\
& Z=3
\end{aligned}
$$

Association is in opposite directions in tables $Z=1$ and $Z=3$.

$\sqrt{5}$ Marginal Dependence/Conditional Independence

or just "Conditional Independence"

- This situation and concept is not unique to categorical data analysis.
- Conditional independence is very important and is the basis for many models and techniques including
- Latent variable models (e.g., factor analysis, latent class analysis, item response theory, etc.).
- Multivariate Graphical models, which provide ways to decompose models and problems into sub-problems.
- Back to categorical data....

5 Conditional Independence

Hypothetical Example from Agresti, 1990:
Marginal Table:

	Delinquent				
Boy Scout	Yes	No			$\hat{\theta}=.56$
	36	364	400	$G^{2}=6.882$	
Yos	60	340	400		$p-$-value $=.01$

Partial Tables - condition on socioeconomic status
SES = Low

Boy Scout	Delinquent		$50 \hat{\theta}=1.00$	$\hat{\theta}=1.00$	Boy Scout			132		$=1.00$
	Yes	No				Delinquent Yes No				
Yes	10	40				Yes	18		150	
No	40	160	200			No	18	132	150	
	50	200	250				36	264	300	

SES $=$ High				
	Delinquent			
Boy Scout	Yes	No		
Yes	8	192	200	$\hat{\theta}=1.00$
No	2	48	50	
	10	240	250	

$\sqrt{5}$ Example of Conditional Independence: $\mathcal{C} \mathcal{A} \mathcal{L}$

- University of California, Berkeley Graduate Admissions (1973). Data from Freedman, Pisani, \& Purves (1978).
- Question: Is there sex discrimination in admission to graduate school?
- The data for two departments ($\mathrm{B} \& \mathrm{C}$) of the 6 largest are

	Admitted		
Gender	Yes	No	
Female	219	399	618
Male	473	412	885
	692	811	1503

$$
\begin{array}{r}
\hat{\theta}=.48 \\
1 / \hat{\theta}=2.09 \\
95 \% \mathrm{CI}:(.39, .59)
\end{array}
$$

odds $($ female admitted $)=219 / 399=.55$
odds $($ male admitted $)=473 / 412=1.15$

$\sqrt{ } \mathrm{C} \mathcal{A L}$ Admissions Data by Department

Department B:

	Admitted		
Gender	Yes	No	
Female	17	8	25
Male	353	207	560
	370	215	585

$$
\begin{array}{r}
\hat{\theta}=1.25 \\
95 \% \text { CI: }(.53,2.94)
\end{array}
$$

Department C:

	Admitted		
Gender	Yes	No	
Female	202	391	593
Male	120	205	325
	322	215	918

$\hat{\theta}=.88$
$95 \% \mathrm{Cl}:(.67,1.17)$

$\sqrt{3}$ 3rd Example of Conditional Independence

... Maybe conditional independence. . . Job satisfaction (Andersen, 1985).
These data are from a large scale investigation of blue collar workers in Denmark (1968).
Three variables:

- Worker job satisfaction (Low, High).
- Supervisor job satisfaction (Low, High).
- Quality of Management (Bad, Good).

The Worker \times Supervisor Job Satisfaction (Marginal Table):

	Worker		
Supervisor satisfaction	satisfaction Low		High

$\hat{\theta}=1.86$	$95 \% \mathrm{Cl}(1.37,2.52)$		
Statistics	$d f$	Value	Prob
X^{2}	1	17.00	$<.001$
G^{2}	1	17.19	$<.001$

$\sqrt{3}$ 3rd Example: Partial Tables

Job satisfaction conditional on management quality
Bad Management

		Worker's		
		satisfaction		
Supervisor's	Low	Low	High	
Sur	103	87	190	
satisfaction	High	32	42	74
		135	129	264

$\hat{\theta}_{b a d}=1.55$ and $95 \% \mathrm{Cl}$ for $\theta_{\text {bad }}$ is $(.90,1.67)$
$\hat{\theta}_{\text {good }}=1.42$ and $95 \% \mathrm{Cl}$ for $\theta_{\text {good }}$ is $(.94,2.14)$

		Bad Management		Good Management	
Statistic	$d f$	Value	p-value	Value	p-value
X^{2}	1	2.56	.11	2.85	.09
G^{2}	1	2.57	.11	2.82	.09

We'll come back to this example. ...

$\sqrt{3}$ Simpson's Paradox

The marginal association is in the opposite direction as the conditional (or partial) association.
Consider 3 dichotomous variables: X, Y, and Z where

- $P(Y=1 \mid X=1)=$ conditional probability $Y=1$ given $X=1$,
- $P(Y=1 \mid X=1, Z=1)=$ conditional probability $Y=1$ given

$$
X=1 \text { and } Z=1
$$

- Simpson's Paradox:

$$
\begin{aligned}
\text { Marginal: } P(Y=1 \mid X=1) & <P(Y=1 \mid X=2) \\
\text { Conditionals: } P(Y=1 \mid X=1, Z=1) & >P(Y=1 \mid X=2, Z=1) \\
P(Y=1 \mid X=1, Z=2) & >P(Y=1 \mid X=2, Z=2)
\end{aligned}
$$

- In terms of odds ratios, it is possible to observed the following pattern of marginal and partial associations:

Marginal odds: $\theta_{X Y}<1$; however, Partial odds: $\theta_{X Y(1)}>1$ and $\theta_{X Y(2)}>1$

$\sqrt{5}$ (Hypothetical) Example of Simpson's Paradox

$$
\begin{aligned}
& Z=1 \quad Z=2
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{X Y(z=1)}=5.56 \quad \text { and } \quad \theta_{X Y(z=2)}=19.0 \\
& \pi_{1(x=1, z=1)}=50 / 950=.05 \quad \text { and } \quad \pi_{1(x=1, z=2)}=500 / 505=.9 \\
& \pi_{2(x=2, z=1)}=1 / 101=.01 \quad \text { and } \quad \pi_{2(x=2, z=2)}=500 / 595=.8
\end{aligned}
$$

The $X Y$ margin:

$$
\begin{array}{l|rr|rl}
& Y=1 & Y=2 & & \theta_{X Y}=.237 \\
\cline { 2 - 3 } X=1 & 550 & 905 & 1455 & \\
\pi_{1}=550 / 1455=.38 \\
X=2 & 501 & 195 & 696 & \\
\cline { 2 - 3 } 2=501 / 696=.72
\end{array}
$$

$\sqrt{5}$ Picture of Simpson's Paradox

$\sqrt{5}$ Homogeneous Association

Definition: The association between variables X, Y, and Z is "homogeneous" if the following three conditions hold:

$$
\begin{aligned}
\theta_{X Y(1)} & =\ldots=\theta_{X Y(k)}=\ldots=\theta_{X Y(K)} \\
\theta_{X Z(1)} & =\ldots=\theta_{X Z(j)}=\ldots=\theta_{X Z(J)} \\
\theta_{Y Z(1)} & =\ldots=\theta_{Y Z(i)}=\ldots=\theta_{Y Z(I)}
\end{aligned}
$$

- There is "no interaction between any 2 variables in their effects on the third variable".
- There is "no 3-way interaction" among the variables.
- If one of the above holds, then the other two will also hold.
- Conditional independence is a special case of this.

For example,

$$
\theta_{Y Z(1)}=\ldots=\theta_{Y Z(i)}=\ldots=\theta_{Y Z(I)}=1
$$

Homogeneous Association (continued)

- There are even simpler independence conditions are that special cases of homogeneous association, but this is a topic for another day.
- When these three conditions (equations) do not hold, then the conditional odds ratios for any pair of variables are not equal. Conditional odds ratios differ/depend on the level of the third variable.
- Example of 3-way Interaction - the Age \times Smoking \times Breath test results example.

Example of Homogeneous Association

Attitude Toward Media (Fienberg, 1980). "Are radio and TV networks doing a good, fair, or poor job?"

Response

Year	Race	Good	Fair	Poor
1959	Black	81	23	4
	White	325	243	54
1971	Black	224	144	24
	White	600	636	158

$$
\begin{aligned}
\hat{\theta}_{R Q 1(1959)} & =(81)(243) /(325)(23)=2.63 \\
\hat{\theta}_{R Q 1(1971)} & =(224)(636) /(600)(144)=1.65 \\
\hat{\theta}_{R Q 2(1959)} & =(23)(54) /(243)(4)=1.28 \\
\hat{\theta}_{R Q 2(1971)} & =(144)(158) /(636)(24)=1.49 \\
\hat{\theta}_{Y R(\text { good })} & =(81)(600) /(325)(224)=.68 \\
\hat{\theta}_{Y R(\text { fair })} & =(23)(636) /(243)(144)=.42 \\
\hat{\theta}_{Y R(\text { poor })} & =(4)(158) /(54)(24)=.48 \\
\hat{\theta}_{Y Q 1 \text { (black })} & =(81)(144) /(23)(224)=2.26 \\
\hat{\theta}_{Y Q 1(\text { white })} & =(325)(636) /(600)(243)=1.42 \\
\hat{\theta}_{Y Q 2(\text { black })} & =(23)(24) /(4)(144)=.96 \\
\hat{\theta}_{Y Q 2(\text { white })} & =(243)(158) /(54)(646)=1.10
\end{aligned}
$$

$\sqrt{3}$ Statistical Inference \& 3-Way Tables

(Large samples)
We'll focus methods for $2 \times 2 \times K$ tables.

- Sampling Models for 3-Way tables.
- Test of conditional independence.
- Estimating common odds ratio.
- Test of homogeneous association.
- Further Comments

$\sqrt{3}$ Sampling Models for 3-Way Tables

Generalizations of the ones for 2-way tables, but there are now more possibilities. Possible Sampling Models for 3-Way tables:

- Independent Poisson variates - nothing fixed, each cell is Poisson.
- Multinomial counts with only the overall total n is fixed.
- Multinomial counts w/ fixed sample size for each partial. For example, the partial tables of $X \times Y$ for each level of Z, only the total
- Independent binomial (or multinomial) samples within each partial table.

For example, if n_{1+k} and n_{2+k} are fixed in each 2×2 partial table of X crossed with Y for $k=1, \ldots, K$ levels of Z, then we have independent binomial samples within each partial table.

$\sqrt{3}$ Tests of Conditional Independence

Two methods:

- Sum of test statistics for independence in each of the partial tables to get an overall chi-squared statistic for "conditional independence" this is the equivalent to a model based test discussed later in course.
- Cochran-Mantel-Haenszel Test — we'll talk about this one first.

$\sqrt{3}$ Cochran-Mantel-Haenszel Test

Example: Cal graduate admission data

- X : Gender (female, male).
- Y : Admission to graduate school (admitted, denied).
- Z: Department to which person applied (6 largest ones, A-F).

A $2 \times 2 \times 6$ table of Gender by Admission by Department.
For each Gender by Admission partial table, if we take the row totals (n_{1+k} and n_{2+k}) and the column totals ($n_{+1 k}$ and $n_{+2 k}$) as fixed, then once we know the value of a single cell within the table, we can fill in the rest of the table. For department A :

Gender	Admitted?		
	Yes	No	
Female	89	(19)	108
Male	(512)	(313)	825
	601	332	933

IJ Idea Behind the CMH Test

- From discussion of Fisher's exact test, we know that the distribution of 2×2 tables with fixed margins is hypergeometric.
- Regardless of sampling scheme, if we consider row and column totals of partial tables as fixed, we can use hypergeometric distribution to compute probabilities.
- The test for conditional association uses one cell from each partial table.
- Historical Note: In developing this test, Mantel and Haenszel were concerned with analyzing retrospective studies of diseases (Y). They wanted to compare two groups (X) and adjust for a control variable (Z). Even though only 1 margin of the data (disease margin, Y) is fixed, they analyzed data by conditioning on both the outcome (Y) and group margins (X) for each level of the control variable (Z).

$\sqrt{5}$ Statistical Hypotheses

If the null hypothesis of conditional independence is true, i.e.,

$$
H_{o}: \theta_{X Y(1)}=\ldots=\theta_{X Y(K)}=1
$$

Then the mean of the $(1,1)$ cell of k th partial table is

$$
\mu_{11 k}=E\left(n_{11 k}\right)=\hat{\mu}_{11 k}=n_{++k} \hat{\pi}_{1+k} \hat{\pi}_{+1 k}=\frac{n_{1+k} n_{+1 k}}{n_{++k}}
$$

and the variance of the $(1,1)$ cell of the k th partial table is

$$
\widehat{\operatorname{Var}}\left(n_{11 k}\right)=\frac{n_{1+k} n_{2+k} n_{+1 k} n_{+2 k}}{n_{++k}^{2}\left(n_{++k}-1\right)}
$$

If the null is false, then we expect that for tables where

- $\theta_{X Y(k)}>1 \Longrightarrow\left(n_{11 k}-\mu_{11 k}\right)>0$
- $\theta_{X Y(k)}<1 \Longrightarrow\left(n_{11 k}-\mu_{11 k}\right)<0$
- $\theta_{X Y(k)}=1 \Longrightarrow\left(n_{11 k}-\mu_{11 k}\right) \approx 0$

CMH Test Statistic

Mantel \& Haenszel (1959) proposed the following statistic

$$
M^{2}=\frac{\left(\sum_{k}\left|n_{11 k}-\mu_{11 k}\right|-\frac{1}{2}\right)^{2}}{\sum_{k} \operatorname{Var}\left(n_{11 k}\right)}
$$

If H_{o} is true, then M^{2} is approximately chi-squared with $d f=1$.
Cochran (1954) proposed a similar statistic, except that

- He did not include the continuity correction, " $-1 / 2$ ".
- He used a different $\operatorname{Var}\left(n_{11 k}\right)$.

The statistic the we will use is a combination of these two proposed statistics, the "Cochran-Mantel-Haenszel" statistic

$$
C M H=\frac{\left[\sum_{k}\left(n_{11 k}-\hat{\mu}_{11 k}\right)\right]^{2}}{\sum_{k} \widehat{\operatorname{Var}}\left(n_{11 k}\right)}
$$

where

- $\hat{\mu}_{11 k}=n_{1+k} n_{+1 k} / n_{++k}$
- $\widehat{\operatorname{Var}}\left(n_{11 k}\right)=n_{1+k} n_{2+k} n_{+1 k} n_{+2 k} / n_{++k}^{2}\left(n_{++k}-1\right)$

$\sqrt[3]{ } \sqrt{\text { Properties of the CMH Test Statistic }}$

$$
C M H=\frac{\left(\sum_{k}\left(n_{11 k}-\mu_{11 k}\right)\right)^{2}}{\sum_{k} \operatorname{Var}\left(n_{11 k}\right)}
$$

- For large samples, when H_{o} is true, CMH has a chi-squared distribution with $d f=1$.
- If all $\theta_{X Y(k)}=1$, then CMH is small (close to 0).

Example: SES \times Boy Scout \times Deliquent. Since $\hat{\theta}=1$ for each partial table, if we compute $C M H$, it would equal 0 and p-value $=1.00$.

- If some/all $\theta_{X Y(k)}>1$, then CMH is large.

Example: Age \times Smoking \times Breath Test.
Example: CAL graduate admissions data,
Departments (6 versus 5) \times Gender \times Admission.

- If some/all $\theta_{X Y(k)}<1$, then CMH is large.

$\sqrt{5}$ More Properties of the CMH Test Statistic

$$
C M H=\frac{\left(\sum_{k}\left(n_{11 k}-\mu_{11 k}\right)\right)^{2}}{\sum_{k} \operatorname{Var}\left(n_{11 k}\right)}
$$

- If some $\theta_{X Y(k)}>1$ and some $\theta_{X Y(k)}<1, C M H$ test is not appropriate.
Example: Three tables of Group \times Response (hypothetical "DIF" case).
- The test works well and is more powerful when $\theta_{X Y(k)}$'s are in the same direction and of comparable size.
Example: Management quality \times Worker satisfaction \times Supervisor's satisfaction.

$\sqrt{3}$ Age \times Smoking \times Breath test results

Example: These data are from a study reported by Forthofer \& Lehnen (1981) (Agresti, 1990). Subjects were whites who work in certain industrial plants in Houston.
Partial Tables:
Age <40

Smoking	Test Result		611
Status	Normal	Not Normal	
Never	577	34	
Current	682	57	739
	1259	91	1350

Statistical Hypotheses:
$H_{o}: \theta_{S B(<40)}=\theta_{S B(40-50)}=1$
H_{A} : Smoking and test results are conditionally dependent.

$\sqrt{3}$ CMH Statistic for Age \times Smoking \times Breath

Age <40	Age 40-59
$\hat{\theta}_{1}=1.418$	$\hat{\theta}_{2}=12.38$
$\hat{\mu}_{111}=(611)(1259) / 1350=569.81$	$\hat{\mu}_{112}=(168)(409) / 487=141.09$
$n_{111}-\hat{\mu}_{111}=577-569.81=7.19$	$n_{112}-\hat{\mu}_{112}=164-141.09=22.91$
$\widehat{\operatorname{var}}\left(n_{111}\right)=\frac{(611)(739)(1259)(91)}{1350^{2}(1350-1)}=21.04$	$\widehat{\operatorname{var}}\left(n_{111}\right)=\frac{(168)(319)(409)(78)}{487^{2}(487-1)}=14.83$

$$
\begin{aligned}
C M H & =\frac{(7.19+22.91)^{2}}{21.04+14.83} \\
& =24.24
\end{aligned}
$$

with $d f=1$ has p-value $<.001$.

$\sqrt{3}$ CMH Example: CAL graduate admissions

The null hypothesis of no sex discrimination is

$$
\theta_{G A(1)}=\theta_{G A(2)}=\theta_{G A(3)}=\theta_{G A(4)}=\theta_{G A(5)}=\theta_{G A(6)}=1
$$

Department A

Gender	admit	deny	
female	89	19	108
male	512	313	825
	601	332	933

Department D

Gender	admit	deny	
female	131	244	375
male	138	279	417
	269	523	792

Department B

admit	deny	
17	8	25
353	207	560
370	215	585

Department E

admit	deny	
94	299	393
53	138	191
147	437	584

Department C

admit	deny	
24	317	341
22	351	373
46	668	714

$$
\begin{aligned}
C M H & =\frac{(19.42+1.19-6.00+3.63-4.92+2.03)^{2}}{21.25+5.57+47.86+44.34+24.25+10.75} \\
& =(15.36)^{2} / 154.02 \\
& =1.53 \quad(p-\text { value }=.217)
\end{aligned}
$$

Department A: $\hat{\theta}_{A}=2.86, G^{2}=17.248, d f=1, p-$ value $<.001$.
Mithout Danحrtmant $\Delta \cdot C M M H-105$ m-van- 70Λ

$\sqrt{5}$ Example: Table \times Group \times Response

(Hypothetical DIF data)
$Z=1$

$$
Z=2
$$

Group	yes	no	
A	10	10	20
B	10	10	20
	20	20	40
	$=1.00$		

$$
Z=3
$$

Group	yes	no	
A	15	5	20
B	5	15	20
	20	20	40
	9.00		

$$
\begin{aligned}
C M H & =\frac{((5-10)+(10-10)+(15-10))^{2}}{\sum_{k=1}^{3} \operatorname{Var}\left(n_{11 k}\right)} \\
& =\frac{(-5+0+5)^{2}}{\sum_{k=1}^{3} \operatorname{Var}\left(n_{11 k}\right)} \\
& =0
\end{aligned}
$$

$\sqrt{5}$ Management \times Supervisor \times Worker

Bad Management

Supervisor	Worker Job		
Satisfaction	Low	High	
Low	103	87	190
High	32	42	74
	135	129	264

$\hat{\theta}_{b a d}=1.55 \quad$ and $95 \% \mathrm{Cl}$ for $\theta_{\text {bad }} \quad(.90,1.67)$
$\hat{\theta}_{\text {good }}=1.42$ and $95 \% \mathrm{Cl}$ for $\theta_{\text {good }} \quad(.94,2.14)$

		Bad Management		Good Management	
Statistic	$d f$	Value	p-value	Value	p-value
X^{2}	1	2.56	.11	2.85	.09
G^{2}	1	2.57	.11	2.82	.09

Note: $G^{2}=2.57+2.82=5.39$ with $d f=2$ has p-value $=.068$.

$\sqrt{5}$ Management \times Supervisor \times Worker (continued)

- Combining the results from these two tables to test conditional independence yields $G^{2}=2.57+2.82=5.39$ with $d f=2$ has p-value $=.068$.
- Conclusion:
H_{O} : Conditional independence, $\theta_{S W(\text { bad })}=\theta_{S W(\text { good })}=1$, is a tenable hypothesis.
- Since $\hat{\theta}_{b a d} \approx \hat{\theta}_{\text {good }}, \mathrm{CMH}$ should be more powerful.

$$
C M H=5.43 \quad p \text {-value }=.021
$$

- Next steps:
- Estimate the common odds ratio.
- Test for homogeneous association.

$\sqrt{5}$ Estimating Common Odds Ratio

For a 2×2 table where $\theta_{X Y(1)}=\ldots=\theta_{X Y(K)}$, the "Mantel-Haenszel Estimator' of a common value of the odds ratio is

$$
\hat{\theta}_{M H}=\frac{\sum_{k}\left(n_{11 k} n_{22 k} / n_{++k}\right)}{\sum_{k}\left(n_{12 k} n_{21 k} / n_{++k}\right)}
$$

For the blue-collar worker example, this value is

$$
\begin{aligned}
\hat{\theta}_{M H} & =\frac{(103)(42) / 264+(59)(205) / 448}{(32)(87) / 264+(78)(109) / 448} \\
& =\frac{16.39+27.12}{10.55+18.98} \\
& =43.51 / 29.52=1.47
\end{aligned}
$$

Which is in between the two estimates from the two partial tables:

$$
\hat{\theta}_{b a d}=1.55 \quad \text { and } \quad \hat{\theta}_{\text {good }}=1.42
$$

$\sqrt{5}$ SE for Common Odds Ratio Estimate

For our example,
95% confidence interval for $\theta \longrightarrow(1.06,2.04)$
The standard error for $\hat{\theta}_{M H}$ is complex, so we will rely on SAS/FREQ get this. When you supply the "CMH" option to the TABLES command, you will get both CMH test statistic and $\hat{\theta}_{M H}$ along with a 95% confidence interval for θ. In R , can get confidence intervals from mantelhaen.test ()

SAS output:
Estimates of the Common Relative Risk (Row1/Row2)

Type of Study	Method	Value	95% Confidence Limits	
Case-Control	Mantel-Haenszel	1.4697	1.0600	2.0377
(Odds Ratio)	Logit	1.4692	1.0594	2.0374

T SAS input \& Common Odds Ratio Estimate

DATA sat;
INPUT manager $\$$ super $\$$ worker $\$$ count;
LABEL manager='Quality of management' super $=$ 'Supervisors Satisfaction' worker='Blue Collar Workers Satisfaction'; DATALINES;
Bad Low Low 103
Bad Low High 87

Good High Low 78
Good High High 205

PROC FREQ DATA=sat ORDER= data;

WEIGHT count;
TABLES manage*super*worker /nopercent norow nocol chisq cmh;

[R \& Common Odds Ratio Estimate

library(vcd) \# Some combination of these...
library (vcdExtra)
library (MASS)
library (DescTools)
library (lawstat)
var.values \leftarrow expand.grid(worker=c("low", "high"), superv=c("low", "high"), manager=c("bad", "good")) counts $\leftarrow c(103,87,32,42,59,109,78,205)$
bcolar \leftarrow cbind(var.values,counts)
\# 3-way Table of data
bcolar.tab \leftarrow xtabs(counts \sim worker + superv + manager, data=bcolar)

$\sqrt{2}$ continued

\# Breslow-Day -- test for homogeneous association BreslowDayTest(bcolar.tab, OR = NA, correct = FALSE)
\# Gives cmh for testing conditional independence \# \& common odds ratio
mantelhaen.test(bcolar.tab,alternative = c("two.sided"), correct $=$ FALSE, exact $=$ FALSE, conf.level $=0.95$)
\# X^{2} tests independence for each level of management CMHtest(bcolar.tab)

[5 Notes Regarding CMH

- If we have homogeneous association, i.e.,

$$
\theta_{X Y(1)}=\ldots=\theta_{X Y(K)}
$$

then $\hat{\theta}_{M H}$ is useful as an estimate of the this common odds ratio.

- If the odds ratios are not the same but they are at least in the same direction, then $\hat{\theta}_{M H}$ can be useful as a summary statistic of the K conditional (partial) associations.
- If there's a 3-way interaction, it is misleading to use an estimate of the common odds ratio. e.g., Age \times Smoking \times Breath test results, we get as a common estimate of the odds ratio

$$
\hat{\theta}_{S B}=2.57
$$

But the ones from the separate tables are

$$
\hat{\theta}_{S B(<40)}=1.42 \quad \text { and } \quad \hat{\theta}_{S B(40-59)}=12.38
$$

$\sqrt{3}$ Testing Homogeneity of Odds Ratios

- For $2 \times 2 \times K$ tables.
- Since $\theta_{X Y(1)}=\ldots=\theta_{X Y(K)}$ implies both

$$
\theta_{Y Z(1)}=\ldots=\theta_{Y Z(I)} \quad \text { and } \quad \theta_{X Z(1)}=\ldots=\theta_{X Z(J)}
$$

To test for homogeneous association we only need to test one of these, e.g.

$$
H_{O}: \theta_{X Y(1)}=\ldots=\theta_{X Y(K)}
$$

- Given estimated expected frequencies assuming that H_{O} is true, the test statistic we use is the "Breslow-Day" statistic, which is like Pearson's X^{2} :

$$
X^{2}=\sum_{i} \sum_{j} \sum_{k} \frac{\left(n_{i j k}-\hat{\mu}_{i j k}\right)^{2}}{\hat{\mu}_{i j k}}
$$

- If H_{O} is true, then the Breslow-Day statistic has an approximate chi-squared distribution with $d f=K-1$.

$\sqrt{3}$ Breslow-Day statistic

- We need $\hat{\mu}_{i j k}$ for each table assuming that the null hypothesis of homogeneous association is true.
- $\left\{\hat{\mu}_{11 k}, \hat{\mu}_{12 k}, \hat{\mu}_{21 k}, \hat{\mu}_{22 k}\right\}$, are found such that
- The margins of the table of estimated expected frequencies equal the observed margins; that is,

$\hat{\mu}_{11 k}$	$\hat{\mu}_{12 k}$	$\left(\hat{\mu}_{11 k}+\hat{\mu}_{12 k}\right)=n_{1+k}$
$\hat{\mu}_{21 k}$	$\hat{\mu}_{22 k}$	$\left(\hat{\mu}_{21 k}+\hat{\mu}_{22 k}\right)=n_{2+k}$
$n_{+1 k}$	$n_{+2 k}$	n_{++k}

- If the null hypothesis of homogeneous association is true, then $\hat{\theta}_{M H}$ is a good estimate of the common odds ratio. When computing estimated expected frequencies, we want them such that the odds ratio computed on each of the K partial tables equals the Mantel-Haenszel estimate of the common odds ratio.

$$
\hat{\theta}_{M H}=\frac{\hat{\mu}_{11 k} \hat{\mu}_{22 k}}{\hat{\mu}_{12 k} \hat{\mu}_{21 k}}
$$

$\sqrt{3}$ Breslow-Day statistic

- Computation of the estimated expected frequencies is a bit complex, so we will rely on SAS/FREQ and R command BreslowDayTest () to give us the Breslow-Day Statistic. In SAS, if you have a $2 \times 2 \times K$ table and request "CMH" options with the TABLES command, you will automatically get the Breslow-Day statistic.
- SAS/R output for manager \times supervisor \times worker is

Breslow-Day Test for
Homogeneity of the Odds Ratios
Chi-Square 0.0649

DF 1

$$
\operatorname{Pr}>\text { ChiSq } \quad 0.7989
$$

- For this test, your sample size should be relatively large, i.e.,

$$
\hat{\mu}_{i j k} \geq 5 \quad \text { for at least } 80 \% \text { of cells }
$$

$\sqrt{5}$ Examples: Testing Homogeneity of Association

Worker \times Supervisor \times Management

- $C M H=5.34$ with p-value $=.02 \Longrightarrow$ conditionally dependent.
- The Mantel-Haenszel estimate of common odds ratio

$$
\hat{\theta}_{M H}=1.47
$$

while the separate ones were

$$
\hat{\theta}_{b a d}=1.55 \quad \text { and } \quad \hat{\theta}_{\text {good }}=1.42
$$

- Now let's test the homogeneity of the odds ratios

$$
H_{O}: \theta_{W S(b a d)}=\theta_{W S(\text { good })}
$$

Breslow-Day statistic $=.065, d f=1$, and p-value $=.80$.

$\sqrt{3}$ Cal Graduate Admissions data

Six of the largest departments:

- $C M H=1.53, d f=1, p$-value $=.217 \Longrightarrow$
gender and admission are conditionally independent (given department).
- Mantel-Haenszel estimate of the common odds ratio

$$
\hat{\theta}_{G A}=.91
$$

and the 95% Confidence interval is

$$
(.772,1.061) .
$$

- Now let's test homogeneity of odds ratios

$$
H_{o}: \theta_{G A(a)}=\theta_{G A(b)}=\theta_{G A(c)}=\theta_{G A(d)}=\theta_{G A(e)}=\theta_{G A(f)}
$$

Breslow-Day statistic $=18.826, d f=5, p-$ value $=.002$.
What's going on?

I5 Cal Graduate Admissions data

Drop Department A, which is the only department for which the odds ratio appears to differ from 1.

- $C M H=.125, d f=1, p$-value $=.724 \Longrightarrow$
gender and admission are conditionally independent
(given department)
- The Mantel-Haneszel estimate of the common odds ratio

$$
\hat{\theta}=1.031
$$

and the 95% confidence interval for $\theta_{G A}$ is

$$
(.870,1.211)
$$

- The test of homogeneity of odds ratios

$$
H_{O}: \theta_{G A(b)}=\theta_{G A(c)}=\theta_{G A(d)}=\theta_{G A(e)}=\theta_{G A(f)}
$$

Breslow-Day statistic $=2.558, d f=4, p$-value $=.63$.
Conclusion?.

$\sqrt{3}$ Group \times Response $\times Z$

(Hypothetical DIF Example)

- $C M H=0.00, d f=1$, and p-value $=1.00 \Longrightarrow$

Group and response are independent given Z

- Mantel-Haenszel estimate of the common odds ratio

$$
\hat{\theta}_{G R}=1.00
$$

- Test for homogeneity of the odds ratios yields Breslow-Day statistic $=20.00, d f=2$, and p-value $<.001$.
- Conclusion?

$\sqrt{5}$ Year \times Race \times Response to Question

Response to question "Are radio and TV networks doing a good, fair, or poor job?"

		Response		
Year	Race	Good	Fair	Poor
1959	Black	81	23	4
	White	325	243	54
1971	Black	224	144	24
	White	600	636	158

We could test for conditional independence, but which variable should be condition on?

- Year and look at Race \times Response to the Question?
- Race and look at Year \times Response to the Question?
- Response to the Question and look at Year \times Race?

$\sqrt{5}$ Year \times Race \times Response to Question

- Since the Breslow-Day statistic only works for $2 \times 2 \times K$ tables, to test for homogeneous association we will set up the test for

$$
H_{O}: \theta_{Y R(\text { good })}=\theta_{Y R(\text { fair })}=\theta_{Y R(\text { poor })}
$$

even though we are more interested in the odds ratios between Year \& Response and Race \& Response.

- Breslow-Day statistic $=3.464, d f=2, p$-value $=.18$.

Note: There is a generalization of CMH for $I \times J \times K$ tables and we can get an estimate of the common odds ratio between Year and Race (i.e., $\hat{\theta}_{M H}=.57$), what we'ld really like are estimates of common odds ratios between Year and Question and between Race and Question.

$\sqrt{5}$ One Last Example: Hurricane Katrina

Reference: http://www.bls.gov/katrina/cpscesquestions.htm The effects of hurricane Katrina on BLS employment and unemployment data collection.

- Employment status (employed, unemployed, not in labor force).
- Residence (same or different than in August).
- Month data from (October, November)

The data (in thousands):
October
November

	Same	Different	Same	Different
Employed	153	179	204	185
Unemployed	18	90	29	71
Not in labor	134	217	209	188

$\sqrt{3}$ Concluding comments on use $\&$ interpretation of

CMH \& Breslow-Day

- There is a generalization of CMH for $I \times J \times K$ tables (which SAS/FREQ will perform).
- There is not such a generalization for the Breslow-Day statistic.
- Given that we can get a non-significant result using CMH when there is association in partial tables, you should check to see whether there is homogeneous association or a 3-way association.
- Breslow-Day statistic does not work well for small samples, while the Cochran-Mantel-Haenszel does pretty well.
- A modeling approach handles $I \times J \times K$ tables and can test the same hypotheses.

$\sqrt{ }$ Use of Tests in Practice

(1) Start with test of homogeneous association (e.g., Breslow-Day)

- If reject, then you have a 3-way association. STOP
- If retain, GO TO NEXT STEP.
(2) Test for conditional independence (e.g., cmh)
- If reject, then conclude homogenous association and get estimate of common odds ratio. STOP
- If retain, GO TO NEXT STEP.
(3) Test for joint independence (e.g., chi-square test).
- If reject, conclude conditional independence STOP
- If retain, GO TO NEXT STEP.
(9) Test for complete independence (e.g., chi-square test)
- If reject, conclude joint independence STOP
- If retain, conclude complete independence DONE

\longleftarrow Practice: 3-way from GSS 2018

The items:

- "What is your religious preference? Is it Protestant, Catholic, Jewish, some other religion, or no religion?" (I did a bit of re-coding)
- "Please tell me whether or not you think it should be possible for a pregnant woman to obtain a legal abortion if ... The woman want it for any reason?" (yes, no).
- "We hear a lot of talk these days about liberals and conservatives. I'm going to show you a seven-point scale on which the political views that people might hold are arranged from extremely liberal-point 1-to extremely conservative-point 7 . Where would you place yourself on this scale?"
Note: I deleted the "moderates" and collapsed liberals and conservatives (later we can look at full scale).

$\sqrt{3}$ Practice: The data

	Abortion:	yes	yes	no	no
	Political view:	Conservative	Liberal	Conservative	Liberal
Religion:	Protestant	68	113	213	78
	Catholic	32	48	59	41
	Jewish	4	11	2	1
	Other	22	139	30	40
	None	5	17	11	5

$\sqrt{3}$ Practice: Analyses

- What are the odds ratios for each of the five 2-way tables of view on abortion by political view.
- Is there a significant relationship in each of the five tables.
- What is the common (Mantel-Haenszel) odds ratio?
- Determine the structure of the 3-way table. Are there any implications regarding the relationship between
- Religion and political view given view on abortion?
- Religion and view on abortion given political view?
$\sqrt{ } \sqrt{ }$ for 3-way tables

We'll use the Cal graduate admission data set for this.
This should cover everything we might need:
library(vcd)
library(vcdExtra)
library (MASS)
library(dplyr)
library(magrittr)
library(DescTools)

R: read in data

```
setwd("D:/Dropbox/edps 589/ Way")
cal\leftarrow read.table(''cal_data_graduate_admission.txt'',
header=TRUE)
cal
```

-- total number of aplicants
n.total \leftarrow sum(cal\$count)

$\sqrt{3}$ R: Marginal table

2-way table of gender \times admissions with various analyses gender.admit \leftarrow xtabs(count \sim gender + admit, data=cal) prop.table(gender.admit) \#cell percentages prop.table(gender.admit, 1) prop.table(gender.admit, 2) \# row percentages \#column percentages
assocstats (gender.admit)
LOR \leftarrow loddsratio(gender.admit) summary (LOR)
$\mathrm{OR} \leftarrow$ oddsratio(gender.admit) summary (OR) confint(OR, level=.99)
\# Gsq and Pearson Xsq
\# compute Log(odds ratio)
\# significant test
\# compute odds ratio
\# significant test
\# confidence interval of od

$\sqrt{ } \sqrt{ }$: Marginal table

... one more
CMHtest(gender.admit, strata=NULL, types=c('general'’))

$\sqrt{ } \mathrm{R}: 3$-way Table

For higher-way table, first is row, 2nd is column, and others layers
3-way Cross-classification first is row, 2nd is column, and others layers
cal.tab \leftarrow xtabs(count \sim gender + admit + depart, data=cal)
cal.tab
cal.tab2 \leftarrow xtabs(count \sim depart + admit + gender, data=cal)

Yet, another format for 3 (higher)-way tables
structable(depart ~ admit + gender, data=cal.tab)
Number of applicants admitted to each department (i.e., collapses over gender)
n.admit \leftarrow aggregate(count \sim admit + depart,data=cal, FUN=sum)

\longleftarrow R: 3-way Table Analyses

Should start with test for homogeneity:

- Breslow-Day test of homogeneity BreslowDayTest(cal.tab, OR = NA, correct = FALSE)
- Woolf test

WoolfTest (cal.tab)
Since these are significant, the data support the conclusion that there is a 3-way association; however, lets look more closely to find source of association.

$\sqrt{ } \sqrt{ }$: 3-way Table Analyses

Try test gender x admission in each department:
CMHtest(cal.tab)
Association statistics for gender \times admission in each department
assocstats(cal.tab)
OR \leftarrow oddsratio(cal.tab)
summary (OR)
confint(OR,level=.95)

The troublemaker is department Department A.

$\sqrt{3}$ R: 3-way Table Plots

A couple of figures of 3-way table sieve(count \sim gender + admit | depart, data=cal.tab, shade=TRUE)
cotabplot(cal.tab,cond="depart", panel=cotab_sieve, shade=TRUE, labeling=labeling_values, gp_text=gpar(fontface="bold")

解: Drop A

Drop department A and repeat some of the above
cal.sub \leftarrow subset(cal,depart='‘A'')
cal.tab3 \leftarrow xtabs(count \sim gender + admit + depart,
data=cal.sub)
CMHtest(cal.tab3)
assocstats(cal.tab3)
$\mathrm{OR} \leftarrow$ oddsratio(cal.tab3)
summary (OR)
confint(OR,level=.95)

