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Examples of 3–Way Tables

Smoking × Breathing × Age.

Group × Response × Z (hypothetical).

Boys Scouts × Delinquent × SES (hypothetical).

Cal graduate admissions × gender × Department.

Supervisor Job satisfaction × Worker Job satisfaction × Management
quality.

Race × Questions regarding media × Year.

Employment status × Residence × Months after hurricane Katrina.
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3–Way Contingency Table
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Slices of this table are “Partial Tables”.

There are 3–ways to slice this table up.

K Frontal planes or XY for each level of Z.
J Vertical planes or XZ for each level of Y .
I Horizontal planes or Y Z for each level of X.
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Partial Tables & Marginal Tables

e.g., XY tables for each level of Z. . .

The Frontal planes of the box are XY tables for each level of Z are
Partial tables:

nij1

Z = 1

X

1...
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I

Y
1 . . . j . . .J

nij2

Z = 2

X

1...
i...
I

Y
1 . . .j . . .J

. . .

. . . nijK

Z = K
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Sum across the K levels of Z Yields the following Marginal Table

nij+
where nij+ =

∑K
k=1 nijkX

1...
i...
I

Y
1 . . . j . . .J
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Conditional or “Partial” Odds Ratios

Notation:

nijk = observed frequency of the (i, j, k)th cell.

µijk = expected frequency of the (i, j, k)th cell.

= nπijk

Conditional Odds Ratios are odds ratios between two variables for fixed
levels of the third variable.

For fixed level of Z, the conditional XY association given kth level of Z is

θXY (k) =
µ11kµ22k

µ12kµ21k
& more generally θii′,jj′(k) =

nijkni′j′k

ni′jknij′k

Conditional odds ratios are computed using the partial tables, and are
sometimes referred to as measures of “partial association”.

If θXY (k) 6= 1, then variables X and Y are “Conditionally associated”.
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Marginal Odds Ratios

are the odds ratios between two variables in the marginal table.

For example, for the XY margin:

µij+ =
K∑

k=1

µijk

and the “Marginal Odds Ratio” is

θXY =
µ11+µ22+

µ12+µ21+
& more generally θii′,jj′ =

µij+µi′j′+

µi′j+µij′+

With sample data, use nijk and θ̂.

Marginal association can be very different from conditional association

Marginal odds ratios may not equal the partial (conditional) odds ratios.
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Example of Marginal vs Partial Odds Ratios

These data are from a study reported by Forthofer & Lehnen (1981)
(Agresti, 1990). Measures on Caucasians who work in certain industrial
plants in Houston were recorded.

Response/outcome variable: breathing test result (normal, not normal).

Explanatory variable: smoking status (never, current).

Conditioning variable: age

Marginal Table (ignoring age):

Smoking Test Result
Status Normal Not Normal
Never 741 38 779
Current 927 131 1058

1668 169 1837

Marginal odds ratio: θ̂ = 2.756
HO : θ = 1 vs HA : θ 6= 1 — G2 = 32.382, df = 1, & p–value< .001.
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Example: Partial Tables

Age < 40
Smoking Test Result

Status Normal Not Normal θ̂ = 1.418
Never 577 34 611 G2 = 2.489
Current 682 57 739 p-value = .115

1259 91 1350

Age 40–59
Smoking Test Result

Status Normal Not Normal θ̂ = 12.38
Never 164 4 168 G2 = 45.125
Current 245 74 319 p-value < .001

409 78 487

Compare these odds ratios with the marginal odds ratio: θ̂ = 2.756
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Marginal and Conditional Associations

Independence = “No Association”.

Dependence =“ Association”.

Marginal Independence means that θXY = 1

Marginal Dependence means that θXY 6= 1

Conditional Independence means that θXY (k) = 1 for all
k = 1, . . . ,K.

Conditional Dependence means that θXY (k) 6= 1 for at least one
k = 1, . . . ,K.

Marginal independence does not imply conditional independence.

Conditional independence does not imply marginal independence.
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Four Situations

Situation Marginal Conditional Comment

1 Independence Independence Not interesting

2 Independence Dependence “Conditional Dependence”

3 Dependence Independence “Conditional Independence”

4 Dependence Dependence “Conditional Dependence ”

Conditional dependence includes a number of different cases, which we
have terms to refer to them:

Simpson’s paradox.
Homogeneous association.
3–way association.

We’ll take a look at examples of situations 2, 3 and 4 and each of these
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Marginal Independence/Conditional Dependence

Marginal Table Response
Group yes no θ = 1
A 30 30 60 log(θ) = 0
B 30 30 60

60 60 120

Partial Tables:
Z = 1 Response Z = 2 Response

Group yes no θ = 1/9 Group yes no θ = 1
A 5 15 20 log(θ) = −2.197 A 10 10 20 log(θ) = 0
B 15 5 20 B 10 10 20

20 20 40 20 20 40

Z = 3 Response
Group yes no θ = 9
A 15 5 20 log(θ) = 2.197
B 5 15 20

20 20 40

Association is in opposite directions in tables Z = 1 and Z = 3.
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Marginal Dependence/Conditional Independence

or just “Conditional Independence”

This situation and concept is not unique to categorical data analysis.

Conditional independence is very important and is the basis for many
models and techniques including

Latent variable models (e.g., factor analysis, latent class analysis, item
response theory, etc.).
Multivariate Graphical models, which provide ways to decompose
models and problems into sub-problems.

Back to categorical data. . . .

C.J. Anderson (Illinois) Three-Way Tables 12.1/ 68



Outline Marginal & Partial Tables Odds Ratios Inference Conditional Independence Homogeneity Conclusion

Conditional Independence

Hypothetical Example from Agresti, 1990:
Marginal Table:

Delinquent

Boy Scout Yes No θ̂ = .56
Yes 36 364 400 G2 = 6.882
No 60 340 400 p–value = .01

96 704 800
Partial Tables — condition on socioeconomic status

SES = Low SES = Medium
Delinquent Delinquent

Boy Scout Yes No Boy Scout Yes No

Yes 10 40 50 θ̂ = 1.00 Yes 18 132 150 =1.00
No 40 160 200 No 18 132 150

50 200 250 36 264 300

SES = High
Delinquent

Boy Scout Yes No

Yes 8 192 200 θ̂ = 1.00
No 2 48 50

10 240 250
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Example of Conditional Independence: CAL

University of California, Berkeley Graduate Admissions (1973). Data
from Freedman, Pisani, & Purves (1978).

Question: Is there sex discrimination in admission to graduate school?

The data for two departments (B & C) of the 6 largest are

Admitted

Gender Yes No θ̂ = .48

Female 219 399 618 1/θ̂ = 2.09
Male 473 412 885 95% CI: (.39, .59)

692 811 1503

odds(female admitted) = 219/399 = .55

odds(male admitted) = 473/412 = 1.15
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CAL Admissions Data by Department

Department B:

Admitted

Gender Yes No θ̂ = 1.25
Female 17 8 25 95% CI: (.53, 2.94)
Male 353 207 560

370 215 585

Department C:

Admitted

Gender Yes No θ̂ = .88
Female 202 391 593 95% CI: (.67, 1.17)
Male 120 205 325

322 215 918
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3rd Example of Conditional Independence

. . .Maybe conditional independence. . . Job satisfaction (Andersen, 1985).
These data are from a large scale investigation of blue collar workers in
Denmark (1968).

Three variables:

Worker job satisfaction (Low, High).

Supervisor job satisfaction (Low, High).

Quality of Management (Bad, Good).

The Worker × Supervisor Job Satisfaction (Marginal Table):
Worker

Supervisor satisfaction θ̂ = 1.86 95% CI (1.37, 2.52)
satisfaction Low High Statistics df Value Prob
Low 162 196 358 X2 1 17.00 < .001
High 110 247 357 G2 1 17.19 < .001

272 443 715
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3rd Example: Partial Tables

Job satisfaction conditional on management quality
Bad Management Good Management

Worker’s Worker’s
satisfaction satisfaction
Low High Low High

Supervisor’s Low 103 87 190 Low 59 109 168
satisfaction High 32 42 74 High 78 205 283

135 129 264 137 314 451

θ̂bad = 1.55 and 95% CI for θbad is (.90, 1.67)

θ̂good = 1.42 and 95% CI for θgood is (.94, 2.14)

Bad Management Good Management
Statistic df Value p–value Value p–value

X2 1 2.56 .11 2.85 .09
G2 1 2.57 .11 2.82 .09

We’ll come back to this example. . . .
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Simpson’s Paradox

The marginal association is in the opposite direction as the conditional (or
partial) association.

Consider 3 dichotomous variables: X, Y , and Z where

P (Y = 1|X = 1) = conditional probability Y = 1 given X = 1,

P (Y = 1|X = 1, Z = 1) = conditional probability Y = 1 given
X = 1 and Z = 1.

Simpson’s Paradox:

Marginal: P (Y = 1|X = 1) < P (Y = 1|X = 2)

Conditionals: P (Y = 1|X = 1, Z = 1) > P (Y = 1|X = 2, Z = 1)

P (Y = 1|X = 1, Z = 2) > P (Y = 1|X = 2, Z = 2)

In terms of odds ratios, it is possible to observed the following pattern
of marginal and partial associations:

Marginal odds: θXY < 1; however, Partial odds: θXY (1) > 1 and θXY (2) > 1

C.J. Anderson (Illinois) Three-Way Tables 18.1/ 68



Outline Marginal & Partial Tables Odds Ratios Inference Conditional Independence Homogeneity Conclusion

(Hypothetical) Example of Simpson’s Paradox

Z = 1 Z = 2
Y = 1 Y = 2 Y = 1 Y = 2

X = 1 50 900 950 X = 1 500 5 505
X = 2 1 100 101 X = 2 500 95 595

51 1000 1051 1000 100 1100

θXY (z=1) = 5.56 and θXY (z=2) = 19.0

π1(x=1,z=1) = 50/950 = .05 and π1(x=1,z=2) = 500/505 = .9

π2(x=2,z=1) = 1/101 = .01 and π2(x=2,z=2) = 500/595 = .8

The XY margin:

Y = 1 Y = 2 θXY = .237
X = 1 550 905 1455 π1 = 550/1455 = .38
X = 2 501 195 696 π2 = 501/696 = .72

1051 1100 2151
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Picture of Simpson’s Paradox
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Homogeneous Association

Definition: The association between variables X, Y , and Z is
“homogeneous” if the following three conditions hold:

θXY (1) = . . . = θXY (k) = . . . = θXY (K)

θXZ(1) = . . . = θXZ(j) = . . . = θXZ(J)

θY Z(1) = . . . = θY Z(i) = . . . = θY Z(I)

There is “no interaction between any 2 variables in their effects on
the third variable”.
There is “no 3–way interaction” among the variables.
If one of the above holds, then the other two will also hold.
Conditional independence is a special case of this.
For example,

θY Z(1) = . . . = θY Z(i) = . . . = θY Z(I) = 1
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Homogeneous Association (continued)

There are even simpler independence conditions are that special cases
of homogeneous association, but this is a topic for another day.

When these three conditions (equations) do not hold, then the
conditional odds ratios for any pair of variables are not equal.
Conditional odds ratios differ/depend on the level of the third
variable.

Example of 3–way Interaction — the Age × Smoking × Breath test
results example.
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Example of Homogeneous Association
Attitude Toward Media (Fienberg, 1980). “Are radio and TV networks
doing a good, fair, or poor job?”

Response
Year Race Good Fair Poor
1959 Black 81 23 4

White 325 243 54
1971 Black 224 144 24

White 600 636 158

θ̂RQ1(1959) = (81)(243)/(325)(23) = 2.63

θ̂RQ1(1971) = (224)(636)/(600)(144) = 1.65

θ̂RQ2(1959) = (23)(54)/(243)(4) = 1.28

θ̂RQ2(1971) = (144)(158)/(636)(24) = 1.49

θ̂Y R(good) = (81)(600)/(325)(224) = .68

θ̂Y R(fair) = (23)(636)/(243)(144) = .42

θ̂Y R(poor) = (4)(158)/(54)(24) = .48

θ̂Y Q1(black) = (81)(144)/(23)(224) = 2.26

θ̂Y Q1(white) = (325)(636)/(600)(243) = 1.42

θ̂Y Q2(black) = (23)(24)/(4)(144) = .96

θ̂Y Q2(white) = (243)(158)/(54)(646) = 1.10
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Statistical Inference & 3–Way Tables

(Large samples)

We’ll focus methods for 2× 2×K tables.

Sampling Models for 3–Way tables.

Test of conditional independence.

Estimating common odds ratio.

Test of homogeneous association.

Further Comments

C.J. Anderson (Illinois) Three-Way Tables 24.1/ 68
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Sampling Models for 3–Way Tables

Generalizations of the ones for 2–way tables, but there are now more possibilities.

Possible Sampling Models for 3–Way tables:

Independent Poisson variates — nothing fixed, each cell is Poisson.

Multinomial counts with only the overall total n is fixed.

Multinomial counts w/ fixed sample size for each partial. For example,
the partial tables of X × Y for each level of Z, only the total

Independent binomial (or multinomial) samples within each partial
table.

For example, if n1+k and n2+k are fixed in each 2× 2 partial table of X
crossed with Y for k = 1, . . . ,K levels of Z, then we have independent
binomial samples within each partial table.
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Tests of Conditional Independence

Two methods:

Sum of test statistics for independence in each of the partial tables to
get an overall chi–squared statistic for “conditional independence” —
this is the equivalent to a model based test discussed later in course.

Cochran-Mantel-Haenszel Test — we’ll talk about this one first.
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Cochran-Mantel-Haenszel Test

Example: Cal graduate admission data

X: Gender (female, male).
Y : Admission to graduate school (admitted, denied).
Z: Department to which person applied (6 largest ones, A–F).

A 2× 2× 6 table of Gender by Admission by Department.

For each Gender by Admission partial table, if we take the row totals
(n1+k and n2+k) and the column totals (n+1k and n+2k) as fixed, then
once we know the value of a single cell within the table, we can fill in the
rest of the table. For department A:

Admitted?
Gender Yes No
Female 89 (19) 108
Male (512) (313) 825

601 332 933
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Idea Behind the CMH Test

From discussion of Fisher’s exact test, we know that the distribution of
2× 2 tables with fixed margins is hypergeometric.

Regardless of sampling scheme, if we consider row and column totals of
partial tables as fixed, we can use hypergeometric distribution to compute
probabilities.

The test for conditional association uses one cell from each partial table.

Historical Note: In developing this test, Mantel and Haenszel were
concerned with analyzing retrospective studies of diseases (Y ). They wanted
to compare two groups (X) and adjust for a control variable (Z). Even
though only 1 margin of the data (disease margin, Y ) is fixed, they analyzed
data by conditioning on both the outcome (Y ) and group margins (X) for
each level of the control variable (Z).

C.J. Anderson (Illinois) Three-Way Tables 28.1/ 68



Outline Marginal & Partial Tables Odds Ratios Inference Conditional Independence Homogeneity Conclusion

Statistical Hypotheses

If the null hypothesis of conditional independence is true, i.e.,

Ho : θXY (1) = . . . = θXY (K) = 1

Then the mean of the (1,1) cell of kth partial table is

µ11k = E(n11k) = µ̂11k = n++kπ̂1+kπ̂+1k =
n1+kn+1k

n++k

and the variance of the (1,1) cell of the kth partial table is

V̂ar(n11k) =
n1+kn2+kn+1kn+2k

n2
++k(n++k − 1)

If the null is false, then we expect that for tables where

θXY (k) > 1 =⇒ (n11k − µ11k) > 0
θXY (k) < 1 =⇒ (n11k − µ11k) < 0
θXY (k) = 1 =⇒ (n11k − µ11k) ≈ 0
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CMH Test Statistic

Mantel & Haenszel (1959) proposed the following statistic

M2 =
(
∑

k |n11k − µ11k| −
1
2)

2

∑
k Var(n11k)

If Ho is true, then M2 is approximately chi-squared with df = 1.

Cochran (1954) proposed a similar statistic, except that

He did not include the continuity correction, “−1/2”.
He used a different Var(n11k).

The statistic the we will use is a combination of these two proposed
statistics, the “Cochran-Mantel-Haenszel” statistic

CMH =
[
∑

k(n11k − µ̂11k)]
2

∑
k V̂ar(n11k)

where

µ̂11k = n1+kn+1k/n++k

V̂ar(n11k) = n1+kn2+kn+1kn+2k/n
2
++k(n++k − 1)
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Properties of the CMH Test Statistic

CMH =
(
∑

k(n11k − µ11k))
2

∑
k Var(n11k)

For large samples, when Ho is true, CMH has a chi-squared
distribution with df = 1.
If all θXY (k) = 1, then CMH is small (close to 0).

Example: SES × Boy Scout × Deliquent. Since θ̂ = 1 for each partial
table, if we compute CMH, it would equal 0 and p-value=1.00.
If some/all θXY (k) > 1, then CMH is large.

Example: Age × Smoking × Breath Test.

Example: CAL graduate admissions data,
Departments (6 versus 5) × Gender × Admission.

If some/all θXY (k) < 1, then CMH is large.
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More Properties of the CMH Test Statistic

CMH =
(
∑

k(n11k − µ11k))
2

∑
k Var(n11k)

If some θXY (k) > 1 and some θXY (k) < 1, CMH test is not
appropriate.

Example: Three tables of Group × Response (hypothetical “DIF”
case).

The test works well and is more powerful when θXY (k)’s are in the
same direction and of comparable size.

Example: Management quality × Worker satisfaction × Supervisor’s
satisfaction.
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Age × Smoking × Breath test results

Example: These data are from a study reported by Forthofer & Lehnen
(1981) (Agresti, 1990). Subjects were whites who work in certain
industrial plants in Houston.
Partial Tables:

Age < 40 Age 40–59
Smoking Test Result Test Result
Status Normal Not Normal Normal Not Normal
Never 577 34 611 164 4 168
Current 682 57 739 245 74 319

1259 91 1350 409 78 487

Statistical Hypotheses:

Ho : θSB(<40) = θSB(40−50) = 1
HA : Smoking and test results are conditionally dependent.
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CMH Statistic for Age × Smoking × Breath

Age < 40 Age 40–59

θ̂1 = 1.418 θ̂2 = 12.38
µ̂111 = (611)(1259)/1350 = 569.81 µ̂112 = (168)(409)/487 = 141.09
n111 − µ̂111 = 577− 569.81 = 7.19 n112 − µ̂112 = 164− 141.09 = 22.91

v̂ar(n111) =
(611)(739)(1259)(91)

13502(1350−1) = 21.04 v̂ar(n111) =
(168)(319)(409)(78)

4872(487−1) = 14.83

CMH =
(7.19 + 22.91)2

21.04 + 14.83

= 24.24

with df = 1 has p–value < .001.
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CMH Example: CAL graduate admissions

The null hypothesis of no sex discrimination is

θGA(1) = θGA(2) = θGA(3) = θGA(4) = θGA(5) = θGA(6) = 1

Department A Department B Department C
Gender admit deny admit deny admit deny
female 89 19 108 17 8 25 202 391 593
male 512 313 825 353 207 560 120 205 325

601 332 933 370 215 585 322 596 918

Department D Department E Department F
Gender admit deny admit deny admit deny
female 131 244 375 94 299 393 24 317 341
male 138 279 417 53 138 191 22 351 373

269 523 792 147 437 584 46 668 714

CMH =
(19.42 + 1.19− 6.00 + 3.63− 4.92 + 2.03)2

21.25 + 5.57 + 47.86 + 44.34 + 24.25 + 10.75

= (15.36)2/154.02

= 1.53 (p–value = .217)

Department A: θ̂A = 2.86, G2 = 17.248, df = 1, p–value< .001.
Without Department A: CMH = .125, p–value= .724.
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Example: Table × Group × Response

(Hypothetical DIF data)
Z = 1 Z = 2 Z = 3

Group yes no Group yes no Group yes no
A 5 15 20 A 10 10 20 A 15 5 20
B 15 5 20 B 10 10 20 B 5 15 20

20 20 40 20 20 40 20 20 40
θ = 0.11 θ = 1.00 θ = 9.00

CMH =
((5− 10) + (10 − 10) + (15− 10))2∑3

k=1 Var(n11k)

=
(−5 + 0 + 5)2∑3
k=1Var(n11k)

= 0

Why is this test a bad thing to do here?C.J. Anderson (Illinois) Three-Way Tables 36.1/ 68
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Management × Supervisor × Worker

Bad Management Good Management
Supervisor Worker Job Worker Job

Satisfaction Low High Low High
Low 103 87 190 Low 59 109 168
High 32 42 74 High 78 205 283

135 129 264 137 314 448

θ̂bad = 1.55 and 95% CI for θbad (.90, 1.67)

θ̂good = 1.42 and 95% CI for θgood (.94, 2.14)

Bad Management Good Management
Statistic df Value p–value Value p–value

X2 1 2.56 .11 2.85 .09
G2 1 2.57 .11 2.82 .09

Note: G2 = 2.57 + 2.82 = 5.39 with df = 2 has p–value= .068.
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Management × Supervisor × Worker (continued)

Combining the results from these two tables to test conditional
independence yields G2 = 2.57 + 2.82 = 5.39 with df = 2 has
p–value= .068.

Conclusion:
HO : Conditional independence, θSW (bad) = θSW (good) = 1, is a
tenable hypothesis.

Since θ̂bad ≈ θ̂good, CMH should be more powerful.

CMH = 5.43 p–value = .021

Next steps:

Estimate the common odds ratio.

Test for homogeneous association.

C.J. Anderson (Illinois) Three-Way Tables 38.1/ 68



Outline Marginal & Partial Tables Odds Ratios Inference Conditional Independence Homogeneity Conclusion

Estimating Common Odds Ratio

For a 2× 2 table where θXY (1) = . . . = θXY (K), the “Mantel-Haenszel

Estimator” of a common value of the odds ratio is

θ̂MH =

∑
k(n11kn22k/n++k)∑
k(n12kn21k/n++k)

For the blue-collar worker example, this value is

θ̂MH =
(103)(42)/264 + (59)(205)/448

(32)(87)/264 + (78)(109)/448

=
16.39 + 27.12

10.55 + 18.98
= 43.51/29.52 = 1.47

Which is in between the two estimates from the two partial tables:

θ̂bad = 1.55 and θ̂good = 1.42
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SE for Common Odds Ratio Estimate

For our example,

95% confidence interval for θ −→ (1.06, 2.04)

The standard error for θ̂MH is complex, so we will rely on SAS/FREQ get
this. When you supply the “CMH” option to the TABLES command, you
will get both CMH test statistic and θ̂MH along with a 95% confidence
interval for θ. In R, can get confidence intervals from mantelhaen.test(

)

SAS output:
Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits

Case-Control Mantel-Haenszel 1.4697 1.0600 2.0377
(Odds Ratio) Logit 1.4692 1.0594 2.0374
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SAS input & Common Odds Ratio Estimate

DATA sat;
INPUT manager $ super $ worker $ count;
LABEL manager=’Quality of management’
super =’Supervisors Satisfaction’
worker=’Blue Collar Workers Satisfaction’;
DATALINES;
Bad Low Low 103
Bad Low High 87
...

...
...

...
Good High Low 78
Good High High 205

PROC FREQ DATA=sat ORDER= data;
WEIGHT count;
TABLES manage*super*worker /nopercent norow nocol chisq cmh;

run;
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R & Common Odds Ratio Estimate

library(vcd) # Some combination of these...

library(vcdExtra)

library(MASS)

library(DescTools)

library(lawstat)

var.values ← expand.grid(worker=c("low","high"),

superv=c("low","high"), manager=c("bad","good"))

counts ← c(103, 87, 32, 42, 59, 109, 78, 205)

bcolar ← cbind(var.values,counts)

# 3-way Table of data

bcolar.tab ← xtabs(counts ∼ worker + superv + manager,

data=bcolar)

C.J. Anderson (Illinois) Three-Way Tables 42.1/ 68



Outline Marginal & Partial Tables Odds Ratios Inference Conditional Independence Homogeneity Conclusion

R continued

# Breslow-Day -- test for homogeneous association

BreslowDayTest(bcolar.tab, OR = NA, correct = FALSE)

# Gives cmh for testing conditional independence

# & common odds ratio

mantelhaen.test(bcolar.tab,alternative = c("two.sided"),

correct = FALSE, exact = FALSE, conf.level = 0.95)

# X2 tests independence for each level of management

CMHtest(bcolar.tab)
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Notes Regarding CMH

If we have homogeneous association, i.e.,

θXY (1) = . . . = θXY (K)

then θ̂MH is useful as an estimate of the this common odds ratio.
If the odds ratios are not the same but they are at least in the same
direction, then θ̂MH can be useful as a summary statistic of the K
conditional (partial) associations.
If there’s a 3-way interaction, it is misleading to use an estimate of the
common odds ratio. e.g., Age × Smoking × Breath test results, we
get as a common estimate of the odds ratio

θ̂SB = 2.57

But the ones from the separate tables are

θ̂SB(<40) = 1.42 and θ̂SB(40−59) = 12.38
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Testing Homogeneity of Odds Ratios

For 2× 2×K tables.
Since θXY (1) = . . . = θXY (K) implies both

θY Z(1) = . . . = θY Z(I) and θXZ(1) = . . . = θXZ(J)

To test for homogeneous association we only need to test one of
these, e.g.

HO : θXY (1) = . . . = θXY (K)

Given estimated expected frequencies assuming that HO is true, the
test statistic we use is the “Breslow-Day” statistic, which is like
Pearson’s X2:

X2 =
∑

i

∑

j

∑

k

(nijk − µ̂ijk)
2

µ̂ijk

If HO is true, then the Breslow-Day statistic has an approximate
chi-squared distribution with df = K − 1.
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Breslow-Day statistic

We need µ̂ijk for each table assuming that the null hypothesis of
homogeneous association is true.

{µ̂11k, µ̂12k, µ̂21k, µ̂22k}, are found such that

The margins of the table of estimated expected frequencies equal the
observed margins; that is,

µ̂11k µ̂12k (µ̂11k + µ̂12k) = n1+k

µ̂21k µ̂22k (µ̂21k + µ̂22k) = n2+k

n+1k n+2k n++k

If the null hypothesis of homogeneous association is true, then θ̂MH is a
good estimate of the common odds ratio. When computing estimated
expected frequencies, we want them such that the odds ratio computed on
each of the K partial tables equals the Mantel-Haenszel estimate of the
common odds ratio.

θ̂MH =
µ̂11kµ̂22k

µ̂12kµ̂21k
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Breslow-Day statistic

Computation of the estimated expected frequencies is a bit complex,
so we will rely on SAS/FREQ and R command BreslowDayTest( )

to give us the Breslow-Day Statistic. In SAS, if you have a 2× 2×K
table and request “CMH” options with the TABLES command, you
will automatically get the Breslow-Day statistic.

SAS/R output for manager × supervisor × worker is

Breslow-Day Test for
Homogeneity of the Odds Ratios

Chi-Square 0.0649
DF 1
Pr > ChiSq 0.7989

For this test, your sample size should be relatively large, i.e.,

µ̂ijk ≥ 5 for at least 80% of cells
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Examples: Testing Homogeneity of Association

Worker × Supervisor × Management

CMH = 5.34 with p–value= .02 =⇒

conditionally dependent.

The Mantel-Haenszel estimate of common odds ratio

θ̂MH = 1.47

while the separate ones were

θ̂bad = 1.55 and θ̂good = 1.42

Now let’s test the homogeneity of the odds ratios

HO : θWS(bad) = θWS(good).

Breslow-Day statistic = .065, df = 1, and p–value= .80.
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Cal Graduate Admissions data

Six of the largest departments:

CMH = 1.53, df = 1, p–value= .217 =⇒

gender and admission are conditionally independent
(given department).

Mantel-Haenszel estimate of the common odds ratio

θ̂GA = .91

and the 95% Confidence interval is

(.772, 1.061).

Now let’s test homogeneity of odds ratios

Ho : θGA(a) = θGA(b) = θGA(c) = θGA(d) = θGA(e) = θGA(f)

Breslow-Day statistic = 18.826, df = 5, p–value= .002.

What’s going on?
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Cal Graduate Admissions data

Drop Department A, which is the only department for which the odds ratio
appears to differ from 1.

CMH = .125, df = 1, p–value= .724 =⇒

gender and admission are conditionally independent
(given department)

.
The Mantel-Haneszel estimate of the common odds ratio

θ̂ = 1.031

and the 95% confidence interval for θGA is

(.870, 1.211)

.
The test of homogeneity of odds ratios

HO : θGA(b) = θGA(c) = θGA(d) = θGA(e) = θGA(f)

Breslow-Day statistic = 2.558, df = 4, p-value= .63.

Conclusion?.
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Group × Response × Z

(Hypothetical DIF Example)

CMH = 0.00, df = 1, and p–value= 1.00 =⇒

Group and response are independent given Z

.

Mantel-Haenszel estimate of the common odds ratio

θ̂GR = 1.00

.

Test for homogeneity of the odds ratios yields
Breslow-Day statistic = 20.00, df = 2, and p–value< .001.

Conclusion?
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Year × Race × Response to Question

Response to question “Are radio and TV networks doing a good, fair, or
poor job?”

Response
Year Race Good Fair Poor
1959 Black 81 23 4

White 325 243 54
1971 Black 224 144 24

White 600 636 158

We could test for conditional independence, but which variable should be
condition on?

Year and look at Race × Response to the Question?

Race and look at Year × Response to the Question?

Response to the Question and look at Year × Race?
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Year × Race × Response to Question

Since the Breslow-Day statistic only works for 2× 2×K tables, to
test for homogeneous association we will set up the test for

HO : θY R(good) = θY R(fair) = θY R(poor)

even though we are more interested in the odds ratios between Year
& Response and Race & Response.

Breslow-Day statistic = 3.464, df = 2, p-value= .18.

Note: There is a generalization of CMH for I × J ×K tables and we
can get an estimate of the common odds ratio between Year and
Race (i.e., θ̂MH = .57), what we’ld really like are estimates of
common odds ratios between Year and Question and between Race
and Question.
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One Last Example: Hurricane Katrina

Reference: http://www.bls.gov/katrina/cpscesquestions.htm
The effects of hurricane Katrina on BLS employment and unemployment
data collection.

Employment status (employed, unemployed, not in labor force).

Residence (same or different than in August).

Month data from (October, November)

The data (in thousands):

October November
Same Different Same Different

Employed 153 179 204 185
Unemployed 18 90 29 71
Not in labor 134 217 209 188
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Concluding comments on use & interpretation of

CMH & Breslow-Day

There is a generalization of CMH for I × J ×K tables (which
SAS/FREQ will perform).

There is not such a generalization for the Breslow-Day statistic.

Given that we can get a non-significant result using CMH when there
is association in partial tables, you should check to see whether there
is homogeneous association or a 3–way association.

Breslow-Day statistic does not work well for small samples, while the
Cochran-Mantel-Haenszel does pretty well.

A modeling approach handles I × J ×K tables and can test the same
hypotheses.
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Use of Tests in Practice

1 Start with test of homogeneous association (e.g., Breslow-Day)

If reject, then you have a 3-way association. STOP

If retain, go to next step.
2 Test for conditional independence (e.g., cmh)

If reject, then conclude homogenous association and get estimate of
common odds ratio. STOP

If retain, go to next step.
3 Test for joint independence (e.g., chi-square test).

If reject, conclude conditional independence STOP

If retain, go to next step.
4 Test for complete independence (e.g., chi-square test)

If reject, conclude joint independence STOP

If retain, conclude complete independence DONE
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Practice: 3-way from GSS 2018

The items:

“What is your religious preference? Is it Protestant, Catholic, Jewish,
some other religion, or no religion?” (I did a bit of re-coding)
“Please tell me whether or not you think it should be possible for a
pregnant woman to obtain a legal abortion if . . . The woman want it
for any reason?” (yes, no).
“We hear a lot of talk these days about liberals and conservatives. I’m
going to show you a seven-point scale on which the political views that
people might hold are arranged from extremely liberal–point 1–to
extremely conservative–point 7. Where would you place yourself on
this scale?”
Note: I deleted the “moderates” and collapsed liberals and
conservatives (later we can look at full scale).
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Practice: The data

Abortion: yes yes no no
Political view: Conservative Liberal Conservative Liberal

Religion: Protestant 68 113 213 78
Catholic 32 48 59 41
Jewish 4 11 2 1
Other 22 139 30 40
None 5 17 11 5
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Practice: Analyses

What are the odds ratios for each of the five 2-way tables of view on
abortion by political view.

Is there a significant relationship in each of the five tables.

What is the common (Mantel-Haenszel) odds ratio?

Determine the structure of the 3-way table. Are there any
implications regarding the relationship between

Religion and political view given view on abortion?
Religion and view on abortion given political view?
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R for 3-way tables

We’ll use the Cal graduate admission data set for this.

This should cover everything we might need:

library(vcd)

library(vcdExtra)

library(MASS)

library(dplyr)

library(magrittr)

library(DescTools)
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R: read in data

setwd("D:/Dropbox/edps 589/ Way")

cal← read.table(‘‘cal data graduate admission.txt’’,

header=TRUE)

cal

-- total number of aplicants

n.total ← sum(cal$count)
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R: Marginal table

2-way table of gender x admissions with various analyses

gender.admit ← xtabs(count ∼ gender + admit, data=cal)

prop.table(gender.admit) #cell percentages

prop.table(gender.admit, 1) # row percentages

prop.table(gender.admit, 2) #column percentages

assocstats(gender.admit) # Gsq and Pearson Xsq

LOR ← loddsratio(gender.admit) # compute Log(odds ratio)

summary(LOR) # significant test

OR ← oddsratio(gender.admit) # compute odds ratio

summary(OR) # significant test

confint(OR, level=.99) # confidence interval of odds
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R: Marginal table

. . . one more

CMHtest(gender.admit, strata=NULL, types=c(‘‘general’’) )
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R: 3-way Table

For higher-way table, first is row, 2nd is column, and others layers

3-way Cross-classification first is row, 2nd is column, and others layers

cal.tab ← xtabs(count ∼ gender + admit + depart, data=cal)

cal.tab

cal.tab2 ← xtabs(count ∼ depart + admit + gender,

data=cal)

Yet, another format for 3 (higher)-way tables
structable(depart ∼ admit + gender, data=cal.tab)

Number of applicants admitted to each department (i.e., collapses over
gender)
n.admit ← aggregate(count ∼ admit + depart,data=cal,

FUN=sum)
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R: 3-way Table Analyses

Should start with test for homogeneity:

Breslow-Day test of homogeneity
BreslowDayTest(cal.tab, OR = NA, correct = FALSE)

Woolf test
WoolfTest(cal.tab)

Since these are significant, the data support the conclusion that there is a
3-way association; however, lets look more closely to find source of
association.
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R: 3-way Table Analyses

Try test gender x admission in each department:

CMHtest(cal.tab)

Association statistics for gender x admission in each department

assocstats(cal.tab)

OR ← oddsratio(cal.tab)

summary(OR)

confint(OR,level=.95)

The troublemaker is department Department A.
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R: 3-way Table Plots

A couple of figures of 3-way table

sieve(count ∼ gender + admit | depart, data=cal.tab,

shade=TRUE)

cotabplot(cal.tab,cond=“depart”, panel=cotab sieve, shade=TRUE,
labeling=labeling values, gp text=gpar(fontface=“bold”)
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R: Drop A

Drop department A and repeat some of the above

cal.sub ← subset(cal,depart=‘‘A’’)

cal.tab3 ← xtabs(count ∼ gender + admit + depart,

data=cal.sub)

CMHtest(cal.tab3)

assocstats(cal.tab3)

OR ← oddsratio(cal.tab3)

summary(OR)

confint(OR,level=.95)
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