	Outline ●	Testing Linear Trend	Power 0000	Choice of Scores	Trend Tests 00000	SAS/R 000	Practice 000000
--	--------------	----------------------	---------------	------------------	----------------------	--------------	--------------------

Ordinal Variables in 2-way Tables Edps/Psych/Soc 589

Carolyn J. Anderson

Department of Educational Psychology

©Board of Trustees, University of Illinois

Outline ●	Testing Linear Trend	Power 0000	Choice of Scores	Trend Tests 00000	SAS/R 000	Practice 000000
I Ou	tline					

Inference for ordinal variables.

- Linear trend instead of independence.
- Greater power with ordinal test.
- Choosing scores for categories.
- Trend tests for $2 \times J$ and $I \times 2$ tables.
- Practice

I Testing Linear Trend instead of Independence

Consider the example from the GSS where we had 2 items both with ordinal response options:

- Item 1: A working mother can establish just as warm and secure a relationship with her children as a mother who does not work.
- Item 2: Working women should have paid maternity leave.

			ltem2			
	Strongly				Strongly	
ltem 2	Agree	Agree	Neither	Disagree	Disagree	
Strongly Agree	97	96	22	17	2	234
Agree	102	199	48	38	5	392
Disagree	42	102	25	36	7	212
Strongly Disagree	9	18	7	10	2	46
	250	415	102	101	16	884

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0	o●ooooooooo	0000		00000	000	000000
I G	SS Example					

Statistic		$d\!f$	Value	p-value
Pearson Chi-square	X^2	12	47.576	< .001
Likelihood Ratio Chi-square	G^2	12	44.961	< .001

There is a "**linear trend**" in these data, so we may be able to describe this relationship using a single statistic:

(Pearson Product Moment) Correlation

$$r = \frac{\operatorname{cov}(X, Y)}{s_X s_Y}$$

To compute r, we need **scores** for both the row (item 1) categories and the column (item 2) categories.

C.J. Anderson (Illinois)

-

• For the categories of the row variable X:

 $u_1 \leq u_2 \leq \ldots \leq u_I$

• For the categories of the column variable Y:

 $v_1 \leq v_2 \leq \ldots \leq v_J$

When the scores have the same order as the categories, they are "monotone".

Assume for now that we have scores. (we'll discuss possible choices and their effect later).

Given scores $\{u_i\}$ and $\{v_j\}$, the correlation equals...

Outline	Testing Linear Trend	Power	Choice of Scores		SAS/R	
0	0000000000	0000	0000000	00000	000	000000

The Correlation for an $(I \times J)$ Table

$$r = \frac{\operatorname{cov}(X,Y)}{s_x s_Y} = \frac{\sum_i \sum_j (u_i - \bar{u})(v_j - \bar{v})n_{ij}}{\sqrt{\left[\sum_i \sum_j (u_i - \bar{u})^2 n_{ij}\right] \left[\sum_i \sum_j (v_j - \bar{v})^2 n_{ij}\right]}}$$

where

• Row mean

$$\bar{u} = \sum_{i} \sum_{j} u_i n_{ij} / n = \sum_{i} u_i n_{i+} / n$$

• Column mean

$$\bar{v} = \sum_{i} \sum_{j} v_j n_{ij} / n = \sum_{j} v_j n_{+j} / n$$

Outline	Testing Linear Trend	Power	Choice of Scores		SAS/R	
0	0000000000	0000	0000000	00000	000	000000

\blacksquare Properties of r for Contingency Table Data

- $-1 \le r \le 1$
- r = 0 corresponds to no (linear) relationship.
- The further r is from 0, the greater the strength of the relationship.
- Perfect association implies that $r = \pm 1$.
- r = 1 if all observations fall into cells on the "diagonal" that runs from the top left to bottom right of the table.
 item r = -1 if all observations fall into cells on the "diagonal" that runs from the top right to bottom left of the table.

Outline	Testing Linear Trend	Power	Choice of Scores		SAS/R	
0	000000000	0000	0000000	00000	000	000000

I Testing Null Hypothesis of Independence

(i.e., no linear trend or $H_o: \rho = 0$) Test statistic $M^2 = (n-1)r^2$

- "Mantel-Haenszel" or "Cochran-Mantel-Haenszel" statistic.
- As n increase, M^2 gets larger.
- As r^2 increases, M^2 gets larger.
- Under independence, $\rho = 0$, $M^2 = 0$.
- For perfect association, $M^2 = (n-1)$.
- Larger values of M^2 provide more evidence against H_O .
- If H_O of independence is true, then M^2 is approximately chi-square distributed with df = 1.
- $\sqrt{M^2} = \sqrt{(n-1)}r$ is approximately distributed at $\mathcal{N}(0,1)$, which can be used to test one-sided alternative hypotheses that the correlation is > 0 or < 0. C.J. Anderson (Illinois) Ordinal Variables in 2-way Tables

Outline	Testing Linear Trend	Power	Choice of Scores		SAS/R	
0	0000000000	0000	0000000	00000	000	000000

I Example: Testing $H_o: \rho = 0$

Try integer (Likert) scores for our categories:

Rows	Response	Columns
$u_1 = 1$	Strongly Agree	$v_1 = 1$
$u_2 = 2$	Agree	$v_2 = 2$
	Neither	$v_3 = 3$
$u_3 = 3$	Disagree	$v_4 = 4$
$u_4 = 4$	Strongly Disagree	$v_{5} = 5$

$$r = .203$$
 and $M^2 = (884 - 1)(.203)^2 = 36.26$

With df = 1, *p*-value for observed M^2 is < .001.

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0	00000000000	0000		00000	000	000000

\blacksquare SAS INPUT to Compute M^2

You must have two numeric variables, one for the rows ("row") and one for the columns ("col"), whose values are the scores. DATA gss;
 INPUT item1 \$ item2 \$ row col count;
 DATALINES;
 strongagree strongagree 1 1 97
 strongagree agree 1 2 96

strongdis strongdis 4 5 2

 For the TABLES command, use the numeric variables that contain the row and column scores.
 PROC FREQ; TABLES row*col / chisq measures;

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0	00000000●00	0000		00000	000	000000

In the output:

- "Mantel-Haenszel Chi-Square" is M^2 .
- "Pearson correlation" is r.

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0	000000000●0	0000		00000	000	000000

I R to Compute M^2 (and r)

Need the package vcdExtra... I think

```
\texttt{gss.tab} \leftarrow \texttt{xtabs}(\texttt{count} \sim \texttt{fechld} + \texttt{mapaid}, \texttt{data=gss})
```

```
# Cochran-Mantel-Haenszel test of association
CMHtest(gss.tab, strata=NULL, rscores=1:4, cscores=1:5,
types="cor" )
```

```
\# To get r, use the fact that M=(n-1)r^2 n \leftarrow sum(gss.tab) ( r \leftarrow sqrt( 36.26132 /(n-1)) )
```

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice

L Extra Power with Ordinal Test

Statistic		df	Value	p-value
Pearson Chi-square	X^2	12	47.576	< .001
Likelihood Ratio Chi-square	G^2	12	44.961	< .001
Mantel-Haenszel Chi-square	M^2	1	36.261	< .001

- $X^2 \ {\rm and} \ G^2$ are designed to detect any type association.
- $\bullet \ M^2$ is designed to detect a specific type of association.
- With ordinal data, we can summarize the association in terms of 1 parameter (i.e., r) rather than (I-1)(J-1) of them (i.e., a set of (I-1)(J-1) odds ratios).
- Advantages of M^2 over X^2 and G^2 when there is a positive or negative association between variables;
 - M^2 is more powerful.
 - M^2 tends to be about the same size as G^2 and X^2 , but only has df = 1 rather than df = (I-1)(J-1).
 - For small to moderate sample sizes, the true sampling distribution of the test statistics are better approximated for those with smaller *df*.

\blacksquare Power for Chi-square Tests: G^2

GSS data: For $G^2 = 44.961$, $df = 12 \longrightarrow \text{power} = .99907$. Null and Alternative Chi-Square Distributions

df= 12, omega= Gsq= 44.961

Outline 0	Testing Linear Trend	Power 00●0	Choice of Scores	Trend Tests 00000	SAS/R 000	Practice 000000

I Computing Power

- π_{ij} = probabilities under the alternative model (which we'll take as the "saturated" model).
- π_{ij}^* = probabilities under the null hypothesis.
- N = total sample size.
- Note: $\mu_{ij}(=n_{ij}) = N\pi_{ij}$ and $m_{ij} = N\pi_{ij}^*$.
- ${\, \bullet \,}$ "omega" (non-centrality parameter) for G^2

$$G^2 = 2N \sum_i \sum_j \pi_{ij} \log \frac{\pi_{ij}}{\pi_{ij}^*} = \omega$$

 ${\ensuremath{\, \circ }}$ "omega" for M^2

$$M^2 = (N-1)r^2 = \omega$$

• Sample Size and Power: $\uparrow N \Longrightarrow \uparrow \omega \Longrightarrow \uparrow$ Power

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0	00000000000	000●		00000	000	000000

I Power and Sample Size

Power Curves for G2 and M2 Based on GSS Example

Outline 0	Testing Linear Trend	Power 0000	Choice of Scores	Trend Tests 00000	SAS/R 000	Practice 000000
I Cł	noice of Score	S				

- The choice of scores often does not make much difference with respect to the value of r and thus test results.
- For the GSS example, an alternative scoring that changed the relative spacing between the scores leads to an increase of r from .203 (from equal spacing) to .207 (from one possible choice for unequal spacing).
- The "best" scores for GSS table that lead to the largest possible correlation, yields r = .210. (Score from correspondence analysis).
- Different scoring tends to have a larger difference when the margins of the tables are unbalanced; that is, when there are some vary large margins and some relatively small ones.

Outline 0	Testing Linear Trend	Power 0000	Choice of Scores	Trend Tests 00000	SAS/R 000	Practice 000000

L Choice of Scores: Example 2

• Data from Farmer, Rotella, Anderson & Wardrop (1996) on gender differences in science careers. The data consist of a cross-classification of individuals by their gender and the prestige level of their occupation. (All subjects/individuals in this study had chosen a career in a science related field).

			Prestige Level of Occupation						
	Gender	40–49	50–59	60–69	70–79	80–89	90–99		
-	Women	22	2	12	11	10	4	61	
	Men	3	0	11	6	25	7	52	
		25	2	23	17	35	11	113	
	Statistic			DF	Value	Prob		-	
	Chi-Squa	re		5	24.640	0.001	-		
	Likelihoo	d Ratio (Chi-Squar	e 5	27.372	0.001			
	Mantel-H	laenszel	Chi-Squar	re 1	19.840	0.001			
_	Pearson	Correlatio	on		.421		_		

C.J. Anderson (Illinois)

Outline	Testing Linear Trend	Power	Choice of Scores		SAS/R	
0	0000000000	0000	0000000	00000	000	000000

L Different Possible Choices of Scores

- Equal Spacing. This is the SAS default.
- <u>Midranks</u> are a "no thought" approach to selecting scores.
 - Rank all observations on each variable and then use the ranks to compute the correlation "Spearman's Rho" or the rank order correlation.
 - All individuals in the same category get the same rank, which equals the "midrank" for them.

	Category	Midrank/Score
	40–49	(1+25)/2 = 13.0
	50–59	(26+27)/2 = 26.5
• e.g., Farmer et al data:	60–69	(28+50)/2 = 39.0
	70–79	(51+67)/2 = 59.0
	80–89	(68 + 102)/2 = 85.0
	90–99	(103 + 113)/2 = 108.0
• In SAS to mid-ranks: PI	ROC FREQ;	
Г	ABLES row	/*col / cmh1 scores=ridits;

Outline	Testing Linear Trend	Power	Choice of Scores		SAS/R	
0	0000000000	0000	0000000	00000	000	000000

L Different Possible Choices of Scores

- Midranks (continued)
 - In our example, different scores don't change our conclusion, if margins are really extreme (see example in Agresti), it can change results.
- <u>Midpoints</u>. When a categorical variable is a discretized numerical one, a good choice of scores often the midpoint. In our example, this leads to equal spacing.
- Use what you know about the data and your best guess as to what the relative spacing should be between the categories.
- <u>Analytical method</u>. Use row-column or "*RC*" association model or correspondence analysis.
- Try a few different ones to see if it makes a difference a "sensitivity analysis".
- My preference: model the association.

 Outline
 Testing Linear Trend
 Power
 Choice of Scores
 Trend Tests
 SAS/R
 Practice

 0
 0000000000
 0000
 00000
 00000
 000000

Example and Results with Different Scores

Summary of Results for Farmer et al. using different scoring methods

Scoring	M^2	p	Pearson r	ASE
Midranks (Ridits)	19.142	< .01	.413	0.081
Equally spaced	19.840	< .01	.421	0.077
Unequal spacing $*$	18.281	< .01	.404	0.078
Unequal spacing [†]	21.664	< .01	.440	.076

 \ast Column scores were -4 , -2 , -1 , 1 , 2 , and 4

[†] Column scores were -4, -3, -0.5, 0.5, 3, 4

Didn't really make much of a difference. . . now for one where scores do matter.

Outline	Testing Linear Trend	Power	Choice of Scores		SAS/R	
0	0000000000	0000	00000000	00000	000	000000

I School of Psychiatric Thought

Wrong ordering of scores:

		SCHOOL		ORIGI	N		
	Scores		1	2	3		
		Frequency	bio	env	comb		
	1	eclectic	90	12	78		
	2	medical	13	1	6		
	3	psychan	19	13	50		
Statisti	C		DF	Valu	е	Prob	
Chi-Square			4	22.37	'8	0.001	
Likeliho	od Ratio	Chi-Square	4	23.03	6	0.001	
Mantel-Haenszel Chi-Square			1	10.73	6	0.001	

Pearson Correlation

0.195 (ASE=0.056)

Outline	Testing Linear Trend	Power	Choice of Scores		SAS/R	
0	0000000000	0000	00000000	00000	000	000000

I A Better Ordering of Categories

Uniform Scores for row and column with good ordering:

		bio	env	comb		
	Frequency	1	3	2	Total	
eclecti	c 2	90	12	78	180	
medica	al 1	13	1	6	20	
psycha	in 3	19	13	50	82	
Statistic		ĺ	DF	Value	Prob	
Chi-Square	e		4	22.378	0.001	
Likelihood	Ratio Chi-Squa	are	4	23.036	0.001	
Mantel-Ha	enszel Chi-Squa	are	1	20.260	0.001	

0.269 (ASE=0.056)

Outline 0	Testing Linear Trend	Power 0000	Choice of Scores 0000000●	Trend Tests 00000	SAS/R 000	Practice 000000
ΙΑ	Better Orderi	ng anc	Scores: RO	C Model		

Scale values from RC association model (scores are estimated from the data):

Statistic	DF	Value	Prob
Chi-Square	4	22.378	0.001
Likelihood Ratio Chi-Square	4	23.036	0.001
Mantel-Haenszel Chi-Square	1	22.042	0.001
Statistic		Value	ASE
Pearson Correlation	0.280	0.055	

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0	00000000000	0000		●0000	000	000000

Trend Tests

<u>Situation</u>: the row variable X is an explanatory variable and the column variable Y is a response/outcome variable.

- When one variable just has two levels (e.g., Farmer et al), we can assign the categories any two distinct values, e.g., 0 and 1, -1 and 1, 0 and 5000 the choice does not effect r.
- Binary X: (i.e, $u_1 = 0$ and $u_2 = 1$) and polytomous ordinal Y with scores v_1, \ldots, v_J .
- The term in the covariance $\sum_i \sum_j u_i v_j n_{ij}$ between X and Y simplifies to _____

$$\sum_{i} \sum_{j} u_i v_j n_{ij} = \sum_{j} v_j n_{2j}$$

• When this is divided by the number of individuals in the 2nd row, we get

$$\bar{v}(i=2) = \sum_{j} v_j n_{2j} / n_{2+j}$$

\blacksquare Trend Test for $2 \times J$ Tables

- Testing a linear trend in this case is the same as testing whether the mean on Y is the same or different for the two rows.
- When midranks are used, the test for linear trend using M^2 is the same as the *Wilcoxon* and *Mann-Whitney* non-parametric tests for mean differences.
- Now for the other case. . . $I \times 2$ Tables.

Outline Testin	ng Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0 0000	0000000	0000	0000000	00000	000	000000

\blacksquare Trend Test for $I \times 2$ Tables

<u>Situation</u>: Polytomous ordinal X with scores u_1, \ldots, u_I and binary Y $(v_1 = 0 \text{ and } v_2 = 1)$.

- This test detects whether the proportion classified as (for example) Y_1 increases (or decreases) linearly with X.
- Cochran–Armitage trend test is the $I \times 2$ version of M^2 . You can specify choice of scores (SAS default: scores=table).
- Example: The Framingham heart study from Cornfield (1962). 40–59 year old males from Framingham, MA were classified on several factors. At a 6 year follow-up,

Blood	He	eart diseas	se	
pressure	Present	(%)	Absent	Total
< 117	3	(.02)	153	156
117-126	17	(.07)	235	252
127-136	12	(.04)	272	284
137-146	16	(.06)	255	271
147-156	12	(.09)	127	139
157-166	8	(.09)	77	85
167-186	16	(.16)	83	99
> 186	8	(.19)	35	43

I Final Comments: Cochran–Armitage Trend Test

 Cochran–Armitage trend test is analogous to testing the slope in a linear (probability) regression model:

$$\pi_i = \alpha + \beta (\text{category score})_i + \epsilon_i$$

• Cochran–Armitage trend test is the "score test" for β . • Let $z \sim \mathcal{N}(0, 1)$,

 $\chi^2(\text{independence}) = z^2 + \chi^2(\text{lack of linear trend}).$

The Cochran–Armitage trend test statistic equals z.

Outline 0	Testing Linear Trend	Power 0000	Choice of Scores	Trend Tests 00000	SAS/R ●00	Practice 000000

The data										
data frame	data frame;									
input bp $\$$ heart $\$$ count bpguess CC ;										
label bp='Blood Pressure'										
heart='Heart Disease Present?';										
cards;										
< 117	yes	3	1	< 117	no	153	1			
117 - 126	yes	17	2	117 - 126	no	235	2			
127 - 136	yes	12	3	127 - 136	no	272	3			
137 - 146	yes	16	4	137 - 146	no	255	4			
147 - 156	yes	12	5	147 - 156	no	127	5			
157 - 166	yes	8	5.5	157 - 166	no	77	5.5			
167 - 186	yes	16	8	167 - 186	no	83	8			
> 186	yes	8	10	> 186	no	35	10			

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0	00000000000	0000		00000	o●o	000000

I SAS continued

```
title 'I X 2 linear trend test -- Cochran-Armitage (equally
spaced scores)';
proc freq order=data; weight count;
tables heart*bp /chisq nopercent norow trend ;
title 'I X 2 linear trend test -- Cochran-Armitage
(scores=midranks)';
proc freq order=data; weight count;
tables heart*bp /chisq nopercent norow trend score=ridit;
run;
title 'I X 2 linear trend test -- Cochran-Armitage (crude
guess of scores)';
proc freq order=data; weight count;
tables heart*bpguess /chisq nopercent norow trend ;
```

Outline 0	Testing Linear Trend	Power 0000	Choice of Scores	Trend Tests 00000	SAS/R ००●	Practice 000000
I R						

Needed for Cochran-Armitage trend test
library(DescTools)

Read in data as data frame hs \leftarrow read.table("framingham_heart_data.txt",header=TRUE)

Need table data for the test hs.tab \leftarrow xtabs(count \sim bp + heart,data=hs)

CochranArmitageTest(hs.tab, alternative = c("two.sided", "increasing", "decreasing"))

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0	00000000000	0000		00000	000	●00000

The items:

- "In general, would you say your quality of life is?"
- "In general, how would your rate your physical health?"

The response options:

Excellent, Very good, Good, Fair, Poor

Outline Te	esting Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
o o	0000000000	0000	0000000	00000	000	000000

Quallity	F	ating of Phy	sical Hea	alth	
of life	Excellent	Very good	Good	Fair	Poor
Excellent	221	160	66	29	2
Very good	120	410	328	81	11
Good	29	71	341	172	27
Fair	7	5	40	138	34
Poor	1	1	2	11	22

Outline	Testing Linear Trend	Power	Choice of Scores	Trend Tests	SAS/R	Practice
0	00000000000	0000		00000	000	00●000

- Conduct test of independence using
 - G^2 X^2
- 2 Conduct tests of ordinal (linear) association (i.e., M^2) using
 - Equal spacing and report M^2 , and Pearson & Spearmen correlations.
 - Mid-Ranks and report M², and Pearson correlation. The midrank are Quality of life: 240 954.5 1749.5 2181.5 2312 Physical health: 189.5 702 1414 2018 2281.5
 - Optimal scores (from correspondence analysis)
 Quality of life: -0.9254 -0.3754 0.5643 1.5577 2.4021
 Physical health: -0.9580 -0.6407 0.1597 1.0745 1.9739
- Ompare and comment.

Outline	Testing Linear Trend	Power	Choice of Scores		SAS/R	Practice
0	0000000000	0000	0000000	00000	000	000000

I Practice: To Get Started

library(vcd)
library(vcdExtra)
library(DescTools)
library(MASS)

(gss \leftarrow read.table("D:/Dropbox/edps 589/2 Chi-square /gss2018_health_life.txt", header=TRUE)) health quality count excellent excellent 221 excellent very_good 160 excellent good 66 excellent 120 very_good 22 poor poor

	Outline	SAS/R Pra	actice
0	0	000 00	0000

📕 Practice: To Get Started

OR

gss <- as.data.frame(cbind(def.var, count))

	Outline 0	Testing Linear Trend	Power 0000	Choice of Scores	Trend Tests 00000	SAS/R 000	Practice 00000●
--	--------------	----------------------	---------------	------------------	----------------------	--------------	--------------------


```
CMHtest(gss.tab,
    strata=NULL,
    rscores=1:5,
    cscores=1:5,
    types=c("cor","general")
)
```

Alternate scores, replace with, for example,

```
rscores = c(240, 954.5, 1749.5, 2181.5, 2312),
cscores=c(189.5,702,1414,2018,2281.5),
```