Ordinal Variables in 2-way Tables

 Edps/Psych/Soc 589Carolyn J. Anderson

Department of Educational Psychology
J ILLINOIS
(c)Board of Trustees, University of Illinois

Outline

Inference for ordinal variables.

- Linear trend instead of independence.
- Greater power with ordinal test.
- Choosing scores for categories.
- Trend tests for $2 \times J$ and $I \times 2$ tables.
- Practice

$\sqrt{5}$ Testing Linear Trend instead of Independence

Consider the example from the GSS where we had 2 items both with ordinal response options:

- Item 1: A working mother can establish just as warm and secure a relationship with her children as a mother who does not work.
- Item 2: Working women should have paid maternity leave.

	Item2					
Strongly						
Agree	Agree	Neither	Disagree	Strongly Disagree		
Item 2	97	96	22	17	2	234
Strongly Agree	102	199	48	38	5	392
Agree	42	102	25	36	7	212
Disagree	9	18	7	10	2	46
Strongly Disagree	250	415	102	101	16	884

TS GS Example

Statistic		$d f$	Value	p-value
Pearson Chi-square	X^{2}	12	47.576	$<.001$
Likelihood Ratio Chi-square	G^{2}	12	44.961	$<.001$

There is a "linear trend" in these data, so we may be able to describe this relationship using a single statistic:
(Pearson Product Moment) Correlation

$$
r=\frac{\operatorname{cov}(X, Y)}{s_{X} s_{Y}}
$$

To compute r, we need scores for both the row (item 1) categories and the column (item 2) categories.

Category Scores and r

- For the categories of the row variable X :

$$
u_{1} \leq u_{2} \leq \ldots \leq u_{I}
$$

- For the categories of the column variable Y :

$$
v_{1} \leq v_{2} \leq \ldots \leq v_{J}
$$

When the scores have the same order as the categories, they are "monotone".

Assume for now that we have scores. (we'll discuss possible choices and their effect later).
Given scores $\left\{u_{i}\right\}$ and $\left\{v_{j}\right\}$, the correlation equals...

$\sqrt{ } \sqrt{ }$ The Correlation for an $(I \times J)$ Table

$$
r=\frac{\operatorname{cov}(X, Y)}{s_{x} s_{Y}}=\frac{\sum_{i} \sum_{j}\left(u_{i}-\bar{u}\right)\left(v_{j}-\bar{v}\right) n_{i j}}{\sqrt{\left[\sum_{i} \sum_{j}\left(u_{i}-\bar{u}\right)^{2} n_{i j}\right]\left[\sum_{i} \sum_{j}\left(v_{j}-\bar{v}\right)^{2} n_{i j}\right]}}
$$

where

- Row mean

$$
\bar{u}=\sum_{i} \sum_{j} u_{i} n_{i j} / n=\sum_{i} u_{i} n_{i+} / n
$$

- Column mean

$$
\bar{v}=\sum_{i} \sum_{j} v_{j} n_{i j} / n=\sum_{j} v_{j} n_{+j} / n
$$

$\sqrt{ } \sqrt{ }$ Properties of r for Contingency Table Data

- $-1 \leq r \leq 1$
- $r=0$ corresponds to no (linear) relationship.
- The further r is from 0 , the greater the strength of the relationship.
- Perfect association implies that $r= \pm 1$.
- $r=1$ if all observations fall into cells on the "diagonal" that runs from the top left to bottom right of the table. item $r=-1$ if all observations fall into cells on the "diagonal" that runs from the top right to bottom left of the table.

$\sqrt{ } \sqrt{ }$ Testing Null Hypothesis of Independence

(i.e., no linear trend or $H_{o}: \rho=0$)

Test statistic

$$
M^{2}=(n-1) r^{2}
$$

- "Mantel-Haenszel" or "Cochran-Mantel-Haenszel" statistic.
- As n increase, M^{2} gets larger.
- As r^{2} increases, M^{2} gets larger.
- Under independence, $\rho=0, M^{2}=0$.
- For perfect association, $M^{2}=(n-1)$.
- Larger values of M^{2} provide more evidence against H_{O}.
- If H_{O} of independence is true, then M^{2} is approximately chi-square distributed with $d f=1$.
- $\sqrt{M^{2}}=\sqrt{(n-1)} r$ is approximately distributed at $\mathcal{N}(0,1)$, which can be used to test one-sided alternative hypotheses that the correlation is >0 or <0

$\sqrt{\sqrt{2}}$ Example: Testing $H_{o}: \rho=0$

Try integer (Likert) scores for our categories:

Rows	Response	Columns
$u_{1}=1$	Strongly Agree	$v_{1}=1$
$u_{2}=2$	Agree	$v_{2}=2$
	Neither	$v_{3}=3$
$u_{3}=3$	Disagree	$v_{4}=4$
$u_{4}=4$	Strongly Disagree	$v_{5}=5$

$$
r=.203 \text { and } M^{2}=(884-1)(.203)^{2}=36.26
$$

With $d f=1, p$-value for observed M^{2} is $<.001$.

$\sqrt{\sqrt{2}}$ SAS INPUT to Compute M^{2}

- You must have two numeric variables, one for the rows ("row") and one for the columns ("col"), whose values are the scores.
DATA gss;
INPUT item1 \$ item2 \$ row col count;
DATALINES;

strongagree strongagree 1 | 1 | 97 |
| :--- | :--- | :--- | :--- |

strongagree agree 11296
strongdis strongdis $4 \quad 5 \quad 2$

- For the TABLES command, use the numeric variables that contain the row and column scores.
PROC FREQ;
TABLES row*col / chisq measures;

§ SAS (continued)

In the output:

- "Mantel-Haenszel Chi-Square" is M^{2}.
- "Pearson correlation" is r.

$\sqrt{5}$ to Compute M^{2} (and r)

Need the package vcdExtra...I think
\# The GSS data in case form gss \leftarrow read.table("gss_data.txt", header=TRUE)
gss.tab \leftarrow xtabs(count \sim fechld + mapaid, data=gss)
\# Cochran-Mantel-Haenszel test of association
CMHtest(gss.tab, strata=NULL, rscores=1:4, cscores=1:5, types="cor")
\# To get r, use the fact that $M=(n-1) r^{2}$
$\mathrm{n} \leftarrow \operatorname{sum}$ (gss.tab)
$(\mathrm{r} \leftarrow \operatorname{sqrt}(36.26132 /(\mathrm{n}-1)))$

$\sqrt{5}$ Extra Power with Ordinal Test

Statistic		$d f$	Value	p-value
Pearson Chi-square	X^{2}	12	47.576	$<.001$
Likelihood Ratio Chi-square	G^{2}	12	44.961	$<.001$
Mantel-Haenszel Chi-square	M^{2}	1	36.261	$<.001$

- X^{2} and G^{2} are designed to detect any type association.
- M^{2} is designed to detect a specific type of association.
- With ordinal data, we can summarize the association in terms of 1 parameter (i.e., r) rather than $(I-1)(J-1)$ of them (i.e., a set of $(I-1)(J-1)$ odds ratios).
- Advantages of M^{2} over X^{2} and G^{2} when there is a positive or negative association between variables;
- M^{2} is more powerful.
- M^{2} tends to be about the same size as G^{2} and X^{2}, but only has $d f=1$ rather than $d f=(I-1)(J-1)$.
- For small to moderate sample sizes, the true sampling distribution of the test statistics are better approximated for those with smaller $d f$.

5 Power for Chi-square Tests: G^{2}

GSS data: For $G^{2}=44.961, d f=12 \longrightarrow$ power $=.99907$.

Null and Alternative Chi-Square Distributions

$$
d f=12, \text { omega }=G s q=44.961
$$

$\sqrt{\zeta}$ Power for M^{2}

For $M^{2}=36.261, d f=1 \longrightarrow$ power $=.99998$.
Null and Alternative Chi-Square Distributions

$$
d f=1, \text { omega }=(M s q=) 36.261
$$

$\sqrt{3}$ Computing Power

- $\pi_{i j}=$ probabilities under the alternative model (which we'll take as the "saturated" model).
- $\pi_{i j}^{*}=$ probabilities under the null hypothesis.
- $N=$ total sample size.
- Note: $\mu_{i j}\left(=n_{i j}\right)=N \pi_{i j}$ and $m_{i j}=N \pi_{i j}^{*}$.
- "omega" (non-centrality parameter) for G^{2}

$$
G^{2}=2 N \sum_{i} \sum_{j} \pi_{i j} \log \frac{\pi_{i j}}{\pi_{i j}^{*}}=\omega
$$

- "omega" for M^{2}

$$
M^{2}=(N-1) r^{2}=\omega
$$

- Sample Size and Power: $\uparrow N \Longrightarrow \uparrow \omega \Longrightarrow \uparrow$ Power

$\sqrt{3}$ Power and Sample Size

Power Curves for G2 and M2 Based on GSS Example

$\sqrt{3}$ Choice of Scores

- The choice of scores often does not make much difference with respect to the value of r and thus test results.
- For the GSS example, an alternative scoring that changed the relative spacing between the scores leads to an increase of r from .203 (from equal spacing) to .207 (from one possible choice for unequal spacing).
- The "best" scores for GSS table that lead to the largest possible correlation, yields $r=.210$. (Score from correspondence analysis).
- Different scoring tends to have a larger difference when the margins of the tables are unbalanced; that is, when there are some vary large margins and some relatively small ones.

Thoice of Scores: Example 2

- Data from Farmer, Rotella, Anderson \& Wardrop (1996) on gender differences in science careers. The data consist of a cross-classification of individuals by their gender and the prestige level of their occupation. (All subjects/individuals in this study had chosen a career in a science related field).

Prestige Level of Occupation

Gender	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$	
Women	22	2	12	11	10	4	61
Men	3	0	11	6	25	7	52
	25	2	23	17	35	11	113

Statistic	DF	Value	Prob
Chi-Square	5	24.640	0.001
Likelihood Ratio Chi-Square	5	27.372	0.001
Mantel-Haenszel Chi-Square	1	19.840	0.001
Pearson Correlation		.421	

$\sqrt{3}$ Different Possible Choices of Scores

- Equal Spacing. This is the SAS default.
- Midranks are a "no thought" approach to selecting scores.
- Rank all observations on each variable and then use the ranks to compute the correlation - "Spearman's Rho" or the rank order correlation.
- All individuals in the same category get the same rank, which equals the "midrank" for them.

Category	Midrank/Score
$40-49$	$(1+25) / 2=13.0$
$50-59$	$(26+27) / 2=26.5$
$60-69$	$(28+50) / 2=39.0$
$70-79$	$(51+67) / 2=59.0$
$80-89$	$(68+102) / 2=85.0$
$90-99$	$(103+113) / 2=108.0$

- In SAS to mid-ranks: P $\overline{\text { ROC FREQ; }}$

TABLES row*col / cmh1 scores=ridits;

$\sqrt{3}$ Different Possible Choices of Scores

- Midranks (continued)
- In our example, different scores don't change our conclusion, if margins are really extreme (see example in Agresti), it can change results.
- Midpoints. When a categorical variable is a discretized numerical one, a good choice of scores often the midpoint. In our example, this leads to equal spacing.
- Use what you know about the data and your best guess as to what the relative spacing should be between the categories.
- Analytical method. Use row-column or " $R C$ " association model or correspondence analysis.
- Try a few different ones to see if it makes a difference - a "sensitivity analysis".
- My preference: model the association.

ζ Example and Results with Different Scores

Summary of Results for Farmer et al. using different scoring methods

Scoring	M^{2}	p	Pearson r	ASE
Midranks (Ridits)	19.142	$<.01$.413	0.081
Equally spaced	19.840	$<.01$.421	0.077
Unequal spacing* *	18.281	$<.01$.404	0.078
Unequal spacing †	21.664	$<.01$.440	.076
* Column scores were $-4,-2,-1,1,2$, and 4				
Column scores were $-4,-3,-0.5,0.5,3,4$				

Didn't really make much of a difference. . . now for one where scores do matter.

$\sqrt{3}$ School of Psychiatric Thought

Wrong ordering of scores:

Scores	SCHOOL	ORIGIN		
		1	23	
	Frequency	bio	env comb	
1	eclectic	90	1278	
2	medical	13	16	
3	psychan	19	$13 \quad 50$	
Statistic		DF	Value	Prob
Chi-Square		4	22.378	0.001
Likelihood Ratio	Chi-Square	4	23.036	0.001
Mantel-Haenszel	Chi-Square	1	10.736	0.001
Pearson Correlat			0.195 (ASE	=0.056)

$\sqrt{ }$ A Better Ordering of Categories

Uniform Scores for row and column with good ordering:

		bio	env	comb	
	Frequency	1	3	2	Total
eclectic	2	90	12	78	180
medical	1	13	1	6	20
psychan	3	19	13	50	82
Statistic	DF				
Chi-Square	4	22.378	Prob		
Likelihood Ratio Chi-Square	4	23.036	0.001		
Mantel-Haenszel Chi-Square	1	20.260	0.001		
Pearson Correlation					

$\sqrt{ } \sqrt{ }$ Better Ordering and Scores: $R C$ Model

Scale values from RC association model (scores are estimated from the data):

Statistic	DF	Value	Prob
Chi-Square	4	22.378	0.001
Likelihood Ratio Chi-Square	4	23.036	0.001
Mantel-Haenszel Chi-Square	1	22.042	0.001

Statistic		Value	ASE
Pearson Correlation	0.280	0.055	

$\sqrt{5}$ Trend Tests

Situation: the row variable X is an explanatory variable and the column variable Y is a response/outcome variable.

- When one variable just has two levels (e.g., Farmer et al), we can assign the categories any two distinct values, e.g., 0 and 1, -1 and 1, 0 and 5000 - the choice does not effect r.
- Binary X : (i.e, $u_{1}=0$ and $u_{2}=1$) and polytomous ordinal Y with scores v_{1}, \ldots, v_{J}.
- The term in the covariance $\sum_{i} \sum_{j} u_{i} v_{j} n_{i j}$ between X and Y simplifies to

$$
\sum_{i} \sum_{j} u_{i} v_{j} n_{i j}=\sum_{j} v_{j} n_{2 j}
$$

- When this is divided by the number of individuals in the 2nd row, we get

$$
\bar{v}(i=2)=\sum_{i} v_{j} n_{2 j} / n_{2+}
$$

$\sqrt{5}$ Trend Test for $2 \times J$ Tables

- Testing a linear trend in this case is the same as testing whether the mean on Y is the same or different for the two rows.
- When midranks are used, the test for linear trend using M^{2} is the same as the Wilcoxon and Mann-Whitney non-parametric tests for mean differences.
- Now for the other case. . $I \times 2$ Tables.

3 Trend Test for $I \times 2$ Tables

Situation: Polytomous ordinal X with scores u_{1}, \ldots, u_{I} and binary Y ($v_{1}=0$ and $v_{2}=1$).

- This test detects whether the proportion classified as (for example) Y_{1} increases (or decreases) linearly with X.
- Cochran-Armitage trend test is the $I \times 2$ version of M^{2}. You can specify choice of scores (SAS default: scores=table).
- Example: The Framingham heart study from Cornfield (1962). 40-59 year old males from Framingham, MA were classified on several factors. At a 6 year follow-up,

Blood pressure	Present disease			
<117	3	$(.02)$	Absent	Total
$117-126$	17	$(.07)$	153	156
$127-136$	12	$(.04)$	235	252
$137-146$	16	$(.06)$	255	284
$147-156$	12	$(.09)$	127	139
$157-166$	8	$(.09)$	77	85
$167-186$	16	$(.16)$	83	99
>186	8	$(.19)$	35	43

Look at the Data

Framingham Heart Study \& Linear Trend

$$
\text { Type of Scores } \cdots \text { Equal } \quad \cdots \text { Mid-ranks }
$$

$\sqrt{3}$ Final Comments: Cochran-Armitage Trend Test

- Cochran-Armitage trend test is analogous to testing the slope in a linear (probability) regression model:

$$
\pi_{i}=\alpha+\beta(\text { category score })_{i}+\epsilon_{i}
$$

- Cochran-Armitage trend test is the "score test" for β.
- Let $z \sim \mathcal{N}(0,1)$,

$$
\chi^{2}(\text { independence })=z^{2}+\chi^{2}(\text { lack of linear trend }) .
$$

The Cochran-Armitage trend test statistic equals z.

TSAS

The data
data frame;
input bp \$ heart \$ count bpguess @@ ;
label bp='Blood Pressure'
heart='Heart Disease Present?';
cards;

<117	yes	3	1	<117	no	153	1
$117-126$	yes	17	2	$117-126$	no	235	2
$127-136$	yes	12	3	$127-136$	no	272	3
$137-146$	yes	16	4	$137-146$	no	255	4
$147-156$	yes	12	5	$147-156$	no	127	5
$157-166$	yes	8	5.5	$157-166$	no	77	5.5
$167-186$	yes	16	8	$167-186$	no	83	8
>186	yes	8	10	>186	no	35	10

$\sqrt{3}$ SAS continued

title 'I X 2 linear trend test -- Cochran-Armitage (equally spaced scores)';
proc freq order=data; weight count;
tables heart*bp /chisq nopercent norow trend ;
title 'I X 2 linear trend test -- Cochran-Armitage (scores=midranks)';
proc freq order=data; weight count;
tables heart*bp /chisq nopercent norow trend score=ridit;
run;
title 'I X 2 linear trend test -- Cochran-Armitage (crude guess of scores)';
proc freq order=data; weight count;
tables heart*bpguess /chisq nopercent norow trend ;
\# Needed for Cochran-Armitage trend test
library (DescTools)
\# Read in data as data frame
hs \leftarrow read.table("framingham_heart_data.txt", header=TRUE)
\# Need table data for the test
hs.tab \leftarrow xtabs(count \sim bp + heart,data=hs)
CochranArmitageTest(hs.tab, alternative = c("two.sided", "increasing", "decreasing"))

Outline
 $\sqrt{ }$ Practice: 2018 GSS Items

The items:

- "In general, would you say your quality of life is?"
- "In general, how would your rate your physical health?"

The response options:
Excellent, Very good, Good, Fair, Poor
$\sqrt{\int}$ Practice: 2018 GSS Data

Quallity	Rating of Physical Health				
of life	Excellent	Very good	Good	Fair	Poor
Excellent	221	160	66	29	2
Very good	120	410	328	81	11
Good	29	71	341	172	27
Fair	7	5	40	138	34
Poor	1	1	2	11	22

J Practice: 2018 GSS Analysis

(1) Conduct test of independence using
(1) G^{2}
(2) X^{2}
(2) Conduct tests of ordinal (linear) association (i.e., M^{2}) using
(1) Equal spacing and report M^{2}, and Pearson \& Spearmen correlations.
(2) Mid-Ranks and report M^{2}, and Pearson correlation. The midrank are

Quality of life: $\begin{array}{llllll}240 & 954.5 & 1749.5 & 2181.5 & 2312\end{array}$
Physical health: $\begin{array}{llllll}189.5 & 702 & 1414 & 2018 & 2281.5\end{array}$
(3) Optimal scores (from correspondence analysis)

Quality of life:	-0.9254	-0.3754	0.5643	1.5577	2.4021
Physical health:	-0.9580	-0.6407	0.1597	1.0745	1.9739

(3) Compare and comment.

3 Practice: To Get Started

library (vcd)
library (vcdExtra)
library (DescTools)
library (MASS)
(gss \leftarrow read.table("D:/Dropbox/edps 589/2 Chi-square /gss2018_health_life.txt", header=TRUE))
quality health count
excellent excellent 221
excellent very_good 160
excellent good 66
very_good excellent 120

\vdots	\vdots	\vdots
poor	poor	22

$\sqrt{3}$ Practice: To Get Started

OR

def.var \leftarrow expand.grid(quality=c("excellent" ,"very_good", "good", "fair", "poor"), health=c("excellent" ,"very_good", "good", "fair", "poor"))
count $\leftarrow c(221, \quad 120, \quad 29, \quad 7,1$,
160, 410, 71, 5, 1,

66, 328, 341, 40, 2,
29, 81, 172, 138, 11,
2, 11, 27, 34, 22)
gss \leftarrow as.data.frame(cbind(def.var, count))

$\sqrt{3}$ Practice: syntax to get M^{2}

```
CMHtest(gss.tab,
    strata=NULL,
    rscores=1:5,
    cscores=1:5,
    types=c("cor","general")
)
```

Alternate scores, replace with, for example,
rscores $=c(240,954.5,1749.5,2181.5,2312)$,
cscores $=c(189.5,702,1414,2018,2281.5)$,

