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Introduction

Problem: “Sparse ” tables.

When samples are small, the distributions of X2, G2, and M2 are not
well approximated by the chi–squared distribution (so p–values for
hypothesis tests are not good).

Solution: Perform “exact tests” (or “estimates of exact tests”).

2× 2 Tables: The case of small samples and small tables.

The basic principles are the same for exact tests for larger 2–way
tables and higher–way tables (and other cases).
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Example: Imposing Views, Imposing Shoes

Alper & Raymond (1995). “Imposing Views, Imposing Shoes: A
Statistician as a Sole Model.”

Classes were assigned randomly to one of two groups — in the control
groups, professors wore ordinary shoes and in the treatment groups,
professors wore Nikes. After 3 times/week for 14 weeks, checked to see if
students purchased Nikes.

Students
Buy Nikes?
Yes No

Professor Yes 4 6 10 θ̂ = .857
Wore Nikes? No 7 9 16

11 15 26
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Fisher’s Exact Test

Fisher’s test conditions on the margins of the observed 2× 2 table.
Consider the set of all tables with the exact same margins as the
observed table.
In this set of tables, once you know the value in 1 cell, you can fill in
the rest of the cells.
Nike example: If we know the row totals (n1+ = 10, n2+ = 16), the
column totals (n+1 = 10, n+2 = 15), and one cell, say n11 = 4, then
we can fill in the rest.

Students
Buy Nikes?
Yes No

Professor Yes 4 10
Wore Nikes? No 16

11 15 26

C.J. Anderson (Illinois) Exact Tests for 2–Way Tables 5.5/ 1



Fisher’s Exact Test

Therefore, to find the probability of observing a table, we only need to
find the probability of 1 cell in the table (rather than the probabilities
of 4 cells).
Typically, we use the (1, 1) cell, and compute the probabilities that
n11 = y.
Computing Probabilities of Tables assuming HO : θ = 1

When θ = 1, the probability distribution of n11 (and therefore of the set
of tables with fixed margins) is

P (n11) =

(

n1+

n11

)(

n2+

n+1−n11

)

(

n

n+1

)

where
(

a

b

)

=
a!

b!(a− b)!

“Binomial Coefficient”.
This probability distribution is “hypergeometric”.
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Example: Fisher’s Exact Test

Students
Buy Nikes?
Yes No

Professor Yes 4 6 10
Wore Nikes? No 7 9 16

11 15 26

For the Nike example with n11 = 4,

P (4) =

(

10

4

)(

16

7

)

(

26

11

) =
(210)(11, 440)

7, 726, 160
= .311

If HO : θ = 1 is true, then the probability of observing this particular table
given the margins equals .311.
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Hypothesis Test that HO : θ = 1

The p–value equals

p–value =
∑

(probabilities of tables that favorHA, including

the probability for the observed table).

To compute the p-value, we need the alternative HA.

HA : θ < 1 or a “Left tail” test,
Find the odds ratio of the observed table,

θ = n11n22/n12n21

Compute the probabilities for the tables where the odds ratios are less
than odds ratio from the observed table.

For our example,

p–value = sum P (y) for tables with θ ≤ .857
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Left Tail Alternative

Left Tail Test hypothesis

HO : θ = 1 versus HA : θ < 1

(1) Find the odds ratio of the observed table,

θ = n11n22/n12n21

(2) Compute the probabilities for the tables where the odds ratios are
less than odds ratio from the observed table.

For our example,

p–value = sum P (y) for tables with θ ≤ .857
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Tables that favor Ha

HO : θ = 1 versus HA : θ < 1

yes no yes no
yes 4 6 10 yes 3 7 10
no 7 9 16 θ = .857 no 8 8 16 θ = .428

11 15 26 11 15 26

P (4) =
(

10

4

)(

16

7

)

/
(

26

11

)

= .31094 P (3) =
(

10

3

)(

16

8

)

/
(

26

11

)

= .19989

yes no yes no
yes 2 8 10 yes 1 9 10
no 9 7 16 θ = .194 no 10 6 16 θ = .067

11 15 26 11 15 26

P (2) =
(

10

2

)(

16

9

)

/
(

26

11

)

= .06663 P (1) =
(

10

1

)(

16

10

)

/
(

26

11

)

= .01037

yes no
yes 0 10 10
no 11 5 16 θ = .000

11 15 26

P (0) =
(

10

0

)(

16

11

)

/
(

26

11

)

= .00057

Left tail p–value equals

= .31094 + .19989 + .06663 + .01037 + .00057 = .588

C.J. Anderson (Illinois) Exact Tests for 2–Way Tables 10.10/ 1



“Right tail” test, HA : θ > 1

Compute the probabilities for tables where θ̂ > the odds ratio from the
observed table. e.g.,

p–value = sum P (y) for tables with θ ≥ .857

θ y P (n11 = y) Left tail p–value Right tail p–value
.000 0 .000565 .000565 1.000000
.067 1 .010365 .010930 .999435
.194 2 .066631 .077561 .989070
.429 3 .199892 .277453 .922439
.857 4 .310943 .588396 .722547

1.833 5 .261193 .849589 .411604
3.300 6 .118724 .968313 .150411
7.000 7 .028268 .996581 .031687
17.333 8 .003262 .999843 .003419
63.000 9 .000156 .999999 .000157
∞ 10 .000001 1.00000 .000001
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Different Criteria for Two–tail test

For “Two–tail” test, HA : θ 6= 1, there are 2 main ways to compute
p–values for two-tailed tests:

“Probability Criterion”
“X2” Criterion

Probability Criterion:

p– value = sum of probabilities of tables that are no

more likely than the observed table.

that is,
p–value =

∑

y

P (y) where P (y) ≤ P (n11)
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Probability Criterion

For our example . . .
y P (n11 = y) Left tail Right tail Two tail

0 .000565 .000565 1.000000 .000722
1 .010365 .010930 .999435 .014349
2 .066631 .077561 .989070 .109248
3 .199892 .277453 .922439 .427864

4 .310943 .588396 .722547 1.000000

5 .261193 .849589 .411604 .689057
6 .118724 .968313 .150411 .227972
7 .028268 .996581 .031687 .042617
8 .003262 .999843 .003419 .003984
9 .000156 .999999 .000157 .000157
10 .000001 1.00000 .000001 .000001

So, for a two–tailed test when n11 = 4,

p–value = .59 + .41 = 1.00.
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X2 Criterion for HA : θ 6= 1

p–value equals the sum of probabilities of tables whose Pearson’s X2 is at
least as large as the value for the observed table.

y P (n11 = y) Left tail Right tail Two tail Pearson’sX2

0 .000565 .000565 1.000000 .000722 11.917
1 .010365 .010930 .999435 .014349 6.949
2 .066631 .077561 .989070 .109248 3.313
3 .199892 .277453 .922439 .427864 1.008

4 .310943 .588396 .722547 1.000000 .035

5 .261193 .849589 .411604 .689057 .394
6 .118724 .968313 .150411 .227972 2.084
7 .028268 .996581 .031687 .042617 5.105
8 .003262 .999843 .003419 .003984 9.458
9 .000156 .999999 .000157 .000157 15.143
10 .000001 1.00000 .000001 .000001 22.159

For n11 = 4, the two–tailed p-value equals 1.00.
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Discreteness of Exact Tests

p–values and Type I Errors

Yates Continuity Correction.

This is an approximation of the exact p–value.
It involves adjusting Pearson’s X2; however, since computers can
compute exact p–values, no real need for this anymore.

Type I Errors.

The smaller n, the smaller the number of possible p–values.
Since there are only a fairly small number of possible p–values, setting
an α level does not work real well.
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Nike Example

If Then
(1) HO : θ = 1 is true (a) We can never achieve α = .05.
(2) HA : θ > 1 (i.e., right tail test) (b) The only time that we can get
(3) α = .05 p–value < .05 is when n11 ≥ 7

(or θ ≥ 7.00), and P (y ≥ 7) = .032.

y P (n11 = y) Left tail Right tail Two tail Pearson’sX2

0 .000565 .000565 1.000000 .000722 11.917
1 .010365 .010930 .999435 .014349 6.949
2 .066631 .077561 .989070 .109248 3.313
3 .199892 .277453 .922439 .427864 1.008
4 .310943 .588396 .722547 1.000000 .035
5 .261193 .849589 .411604 .689057 .394
6 .118724 .968313 .150411 .227972 2.084
7 .028268 .996581 .031687 .042617 5.105
8 .003262 .999843 .003419 .003984 9.458
9 .000156 .999999 .000157 .000157 15.143

10 .000001 1.00000 .000001 .000001 22.159
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Fisher’s Test is Conservative

Consider the expected value of p–values.
Normally, when HO is true, the distribution of p–values is uniform on
the interval (0,1); that is,

E(p–value) = .5

For Fisher’s test and our the Nike example (and any table with the
exact same margins), the expected p–values equals

Left tailed test E(p–value) = .612

Right tailed test E(p–value) = .612

Two–tailed test E(p–value) = .612

What to do?
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Reduce the Conservativeness of Exact Tests

Use a different definition of p–value: “mid p–value”.
Mid p–value equal half the probability of the observed table plus the
probability of more extreme tables.

Nike example with HA : θ > 1,

half probability of observed = .310943/2 = .1554714

probability of more extreme = .411604

mid p–value = .155 + .412 = .567

Which is certainly much smaller than .722 using the other definition of
p–value.

Mid p–value definition doesn’t guarantee that the true Type I error rate
is less than desired α.

Report p–values and treat them as indices of how much evidence you
have against HO.
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Admission Scandal Results Revisited

Admission
no yes Total

I list 37 123 160
general 8000 18000 26000

Total 8037 18123 26160

Fisher’s Test Results:

Fisher’s Exact Test

Cell(1,1) Frequency (F ) 37
Left-sided Pr<= F 0.0206
Right-sided Pr>= F 0.9869

Table Probability (P ) 0.0075
Two-sided Pr <= P 0.0389

Even the most conservative test comes out significant!
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Conditioning on Both Margins

Any other problems with the Nike or Admissions scandal examples and our
use of Fisher’s test?

Fisher’s exact test conditions on both margins, but only 1 margin in the
Nike experiment was fixed and nothing was fixed in the Admissions
example (maybe total admissions). There are other exact tests that &

condition on only 1 margin and on only the total.

There are other exact tests for different situations.
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SAS

data iversusg;

input list $ admit $ count;

datalines;

Ilist yes 123

Ilist no 37

general yes 18000

general no 8000

run;

proc freq;

weight count;

tables list*admit / chisq ;

title ’List x admission’;

run;

For 2× 2 tables, Fisher’s is given with chisq option.
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R

library(vcd)

var.levels ← expand.grid(ilist=c("ilist","general"),

admission=c("yes","no"))

s ←data.frame(var.levels,count=c(123,18000,37,8000))

s.tab ← xtabs(count ∼ ilist + admission,data=s)

addmargins(s.tab)

fisher.test(s.tab, alternative="two.sided", conf.int=TRUE,

conf.level=.99)
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Exact Tests for Larger Tables

SAS/FREQ: By default, Fisher’s is computed for 2× 2 tables whenever
the “CHISQ” options is included in the “TABLES” command,
TABLES profs*student / CHISQ ;

Exact tests conditioning on both margins can be computed on larger
tables by adding the “EXACT” option to the “TABLES” command,
TABLES row*col / EXACT ;

There is a limit to how large tables can be to use this. The test is not
practical (in terms of CPU time) when

n

(I − 1)(J − 1)
> 5

item An alternative to exact tests. . .

StatXact & other packages use randomization methods to compute
approximations of exact p–values.
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