Exact Tests for 2-Way Tables

Edps/Psych/Soc 589

Carolyn J. Anderson

Department of Educational Psychology
IILINOIS
(c) Board of Trustees, University of Illinois

$\sqrt{3}$ Outline

- Introduction
- Fisher's Exact Test
- Various criteria
- Problems with Exact Tests
- SAS \& R
- Large tables

$\sqrt{3}$ Introduction

- Problem: "Sparse" tables.
- When samples are small, the distributions of X^{2}, G^{2}, and M^{2} are not well approximated by the chi-squared distribution (so p-values for hypothesis tests are not good).
- Solution: Perform "exact tests" (or "estimates of exact tests").
- 2×2 Tables: The case of small samples and small tables.
- The basic principles are the same for exact tests for larger 2-way tables and higher-way tables (and other cases).

$\sqrt{5}$ Example: Imposing Views, Imposing Shoes

Alper \& Raymond (1995). "Imposing Views, Imposing Shoes: A Statistician as a Sole Model."

Classes were assigned randomly to one of two groups - in the control groups, professors wore ordinary shoes and in the treatment groups, professors wore Nikes. After 3 times/week for 14 weeks, checked to see if students purchased Nikes.

Fisher's Exact Test

- Fisher's test conditions on the margins of the observed 2×2 table.
- Consider the set of all tables with the exact same margins as the observed table.
- In this set of tables, once you know the value in 1 cell, you can fill in the rest of the cells.
- Nike example: If we know the row totals $\left(n_{1+}=10, n_{2+}=16\right)$, the column totals ($n_{+1}=10, n_{+2}=15$), and one cell, say $n_{11}=4$, then we can fill in the rest.

Fisher's Exact Test

- Therefore, to find the probability of observing a table, we only need to find the probability of 1 cell in the table (rather than the probabilities of 4 cells).
- Typically, we use the $(1,1)$ cell, and compute the probabilities that $n_{11}=y$.
- Computing Probabilities of Tables assuming $H_{O}: \theta=1$
- When $\theta=1$, the probability distribution of n_{11} (and therefore of the set of tables with fixed margins) is

$$
P\left(n_{11}\right)=\frac{\binom{n_{1+}}{n_{11}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}
$$

where

$$
\binom{a}{b}=\frac{a!}{b!(a-b)!}
$$

"Binomial Coefficient".

- This probability distribution is "hypergeometric".

$\sqrt{5}$ Example: Fisher's Exact Test

For the Nike example with $n_{11}=4$,

$$
P(4)=\frac{\binom{10}{4}\binom{16}{7}}{\binom{26}{11}}=\frac{(210)(11,440)}{7,726,160}=.311
$$

If $H_{O}: \theta=1$ is true, then the probability of observing this particular table given the margins equals .311 .

$\sqrt{3}$ Hypothesis Test that $H_{O}: \theta=1$

- The p-value equals
p-value $=\sum$ (probabilities of tables that favor H_{A}, including the probability for the observed table).
- To compute the p-value, we need the alternative H_{A}.
- $H_{A}: \theta<1$ or a "Left tail" test,
- Find the odds ratio of the observed table,

$$
\theta=n_{11} n_{22} / n_{12} n_{21}
$$

- Compute the probabilities for the tables where the odds ratios are less than odds ratio from the observed table.
- For our example,

$$
p \text {-value }=\operatorname{sum} P(y) \text { for tables with } \theta \leq .857
$$

$\sqrt{5}$ Left Tail Alternative

Left Tail Test hypothesis

$$
H_{O}: \theta=1 \quad \text { versus } \quad H_{A}: \theta<1
$$

- (1) Find the odds ratio of the observed table,

$$
\theta=n_{11} n_{22} / n_{12} n_{21}
$$

- (2) Compute the probabilities for the tables where the odds ratios are less than odds ratio from the observed table.

For our example,

$$
p \text {-value }=\operatorname{sum} P(y) \text { for tables with } \theta \leq .857
$$

$\sqrt{5}$ Tables that favor H_{a}

$$
H_{O}: \theta=1 \quad \text { versus } \quad H_{A}: \theta<1
$$

Left tail p-value equals

$$
=.31094+.19989+.06663+.01037+.00057=.588
$$

$\sqrt{\sqrt{2} \text { "Right tail" test, } H_{A}: \theta>1}$

Compute the probabilities for tables where $\hat{\theta}>$ the odds ratio from the observed table. e.g.,

$$
p \text {-value }=\operatorname{sum} P(y) \text { for tables with } \theta \geq .857
$$

θ	y	$P\left(n_{11}=y\right)$	Left tail p-value	Right tail p-value
.000	0	.000565	.000565	1.000000
.067	1	.010365	.010930	.999435
.194	2	.066631	.077561	.989070
.429	3	.199892	.277453	.922439
.857	4	.310943	.588396	.722547
1.833	5	.261193	.849589	.411604
3.300	6	.118724	.968313	.150411
7.000	7	.028268	.996581	.031687
17.333	8	.003262	.999843	.003419
63.000	9	.000156	.999999	.000157
∞	10	.000001	1.00000	.000001

$\sqrt{\int}$ Different Criteria for Two-tail test

For "Two-tail" test, $H_{A}: \theta \neq 1$, there are 2 main ways to compute p-values for two-tailed tests:

- "Probability Criterion"
- " X^{2} " Criterion

Probability Criterion:
p - value $=$ sum of probabilities of tables that are no more likely than the observed table.
that is,

$$
p \text {-value }=\sum_{y} P(y) \quad \text { where } P(y) \leq P\left(n_{11}\right)
$$

$\sqrt{3}$ Probability Criterion

For our example ..

y	$P\left(n_{11}=y\right)$	Left tail	Right tail	Two tail
0	.000565	.000565	1.000000	.000722
1	.010365	.010930	.999435	.014349
2	.066631	.077561	.989070	.109248
3	.199892	.277453	.922439	.427864
4	.310943	.588396	.722547	1.000000
5	.261193	.849589	.411604	.689057
6	.118724	.968313	.150411	.227972
7	.028268	.996581	.031687	.042617
8	.003262	.999843	.003419	.003984
9	.000156	.999999	.000157	.000157
10	.000001	1.00000	.000001	.000001

So, for a two-tailed test when $n_{11}=4$,

$$
p \text {-value }=.59+.41=1.00
$$

$\longleftarrow X^{2}$ Criterion for $H_{A}: \theta \neq 1$

p-value equals the sum of probabilities of tables whose Pearson's X^{2} is at least as large as the value for the observed table.

y	$P\left(n_{11}=y\right)$	Left tail	Right tail	Two tail	Pearson's X^{2}
0	.000565	.000565	1.000000	.000722	11.917
1	.010365	.010930	.999435	.014349	6.949
2	.066631	.077561	.989070	.109248	3.313
3	.199892	.277453	.922439	.427864	1.008
4	.310943	.588396	.722547	1.000000	.035
5	.261193	.849589	.411604	.689057	.394
6	.118724	.968313	.150411	.227972	2.084
7	.028268	.996581	.031687	.042617	5.105
8	.003262	.999843	.003419	.003984	9.458
9	.000156	.999999	.000157	.000157	15.143
10	.000001	1.00000	.000001	.000001	22.159

For $n_{11}=4$, the two-tailed p-value equals 1.00.

$\sqrt{3}$ Discreteness of Exact Tests

p-values and Type I Errors

- Yates Continuity Correction.
- This is an approximation of the exact p-value.
- It involves adjusting Pearson's X^{2}; however, since computers can compute exact p-values, no real need for this anymore.
- Type I Errors.
- The smaller n, the smaller the number of possible p-values.
- Since there are only a fairly small number of possible p-values, setting an α level does not work real well.

$\sqrt{5}$ Nike Example

If
(1) $H_{O}: \theta=1$ is true
(2) $H_{A}: \theta>1$ (i.e., right tail test)
(3) $\alpha=.05$

Then

(a) We can never achieve $\alpha=.05$.
(b) The only time that we can get p-value $<.05$ is when $n_{11} \geq 7$

$$
(\text { or } \theta \geq 7.00), \text { and } P(y \geq 7)=.032 .
$$

y	$P\left(n_{11}=y\right)$	Left tail	Right tail	Two tail	Pearson's X^{2}
0	.000565	.000565	1.000000	.000722	11.917
1	.010365	.010930	.999435	.014349	6.949
2	.066631	.077561	.989070	.109248	3.313
3	.199892	.277453	.922439	.427864	1.008
4	.310943	.588396	.722547	1.000000	.035
5	.261193	.849589	.411604	.689057	.394
6	.118724	.968313	.150411	.227972	2.084
7	.028268	.996581	.031687	.042617	5.105
8	.003262	.999843	.003419	.003984	9.458
9	.000156	.999999	.000157	.000157	15.143
10	.000001	1.00000	.000001	.000001	22.159

$\sqrt{5}$ Fisher's Test is Conservative

- Consider the expected value of p-values.
- Normally, when H_{O} is true, the distribution of p-values is uniform on the interval $(0,1)$; that is,

$$
E(p \text {-value })=.5
$$

- For Fisher's test and our the Nike example (and any table with the exact same margins), the expected p-values equals
Left tailed test $\quad E(p$-value $)=.612$
Right tailed test $\quad E(p$-value $)=.612$
Two-tailed test $\quad E(p$-value $)=.612$
- What to do?

Reduce the Conservativeness of Exact Tests

- Use a different definition of p-value: "mid p-value".
- Mid p-value equal half the probability of the observed table plus the probability of more extreme tables.
- Nike example with $H_{A}: \theta>1$,

$$
\begin{aligned}
\text { half probability of observed } & =.310943 / 2=.1554714 \\
\text { probability of more extreme } & =.411604 \\
\text { mid } p \text {-value } & =.155+.412=.567
\end{aligned}
$$

Which is certainly much smaller than .722 using the other definition of p-value.

- Mid p-value definition doesn't guarantee that the true Type I error rate is less than desired α.
- Report p-values and treat them as indices of how much evidence you have against H_{O}.

$\sqrt{\sqrt{2 d} \text { Admission Scandal Results Revisited }}$

	Admission		
	no	yes	Total
I list	37	123	160
general	8000	18000	26000
Total	8037	18123	26160

Fisher's Test Results:
Fisher's Exact Test
Cell $(1,1)$ Frequency $(F) \quad 37$
Left-sided $\operatorname{Pr}<=F \quad 0.0206$
Right-sided $\operatorname{Pr}>=F \quad 0.9869$
Table Probability $(P) \quad 0.0075$
Two-sided $\operatorname{Pr}<=P \quad 0.0389$
Even the most conservative test comes out significant!

$\sqrt{3}$ Conditioning on Both Margins

Any other problems with the Nike or Admissions scandal examples and our use of Fisher's test?

Fisher's exact test conditions on both margins, but only 1 margin in the Nike experiment was fixed and nothing was fixed in the Admissions example (maybe total admissions). There are other exact tests that \& condition on only 1 margin and on only the total.
There are other exact tests for different situations.

『SAS

```
data iversusg;
input list $ admit $ count;
datalines;
Ilist yes 123
Ilist no 37
general yes 18000
general no 8000
run;
proc freq;
weight count;
tables list*admit / chisq ;
title 'List x admission';
run;
```

For 2×2 tables, Fisher's is given with chisq option.

```
library(vcd)
var.levels \leftarrow expand.grid(ilist=c("ilist","general"),
admission=c("yes", "no"))
s \leftarrowdata.frame(var.levels,count=c(123,18000,37,8000))
s.tab \leftarrow xtabs(count ~ ilist + admission,data=s)
addmargins(s.tab)
fisher.test(s.tab, alternative="two.sided", conf.int=TRUE,
conf.level=.99)
```


$\sqrt{5}$ Exact Tests for Larger Tables

- SAS/FREQ: By default, Fisher's is computed for 2×2 tables whenever the "CHISQ" options is included in the "TABLES" command, TABLES profs*student / CHISQ;
- Exact tests conditioning on both margins can be computed on larger tables by adding the "EXACT" option to the "TABLES" command, TABLES row*col / EXACT;
- There is a limit to how large tables can be to use this. The test is not practical (in terms of CPU time) when

$$
\frac{n}{(I-1)(J-1)}>5
$$

item An alternative to exact tests...
StatXact \& other packages use randomization methods to compute approximations of exact p-values.

