Exact Tests for 2–Way Tables Edps/Psych/Soc 589

Carolyn J. Anderson

Department of Educational Psychology

©Board of Trustees, University of Illinois

- Introduction
- Fisher's Exact Test
- Various criteria
- Problems with Exact Tests
- SAS & R
- Large tables

- Problem: "Sparse " tables.
- When samples are small, the distributions of X^2 , G^2 , and M^2 are not well approximated by the chi-squared distribution (so *p*-values for hypothesis tests are not good).
- <u>Solution</u>: Perform "exact tests" (or "estimates of exact tests").
- 2×2 Tables: The case of small samples and small tables.
- The basic principles are the same for exact tests for larger 2-way tables and higher-way tables (and other cases).

Example: Imposing Views, Imposing Shoes

Alper & Raymond (1995). "Imposing Views, Imposing Shoes: A Statistician as a Sole Model."

Classes were assigned randomly to one of two groups — in the control groups, professors wore ordinary shoes and in the treatment groups, professors wore Nikes. After 3 times/week for 14 weeks, checked to see if students purchased Nikes.

		Stud	ents		
		Buy N	likes?		
		Yes	No		
Professor	Yes	4	6	10	$\hat{\theta} = .857$
Wore Nikes?	No	7	9	16	
		11	15	26	

Fisher's Exact Test

- Fisher's test conditions on the margins of the observed 2×2 table.
- Consider the set of all tables with the exact same margins as the observed table.
- In this set of tables, once you know the value in 1 cell, you can fill in the rest of the cells.
- Nike example: If we know the row totals $(n_{1+} = 10, n_{2+} = 16)$, the column totals $(n_{+1} = 10, n_{+2} = 15)$, and one cell, say $n_{11} = 4$, then we can fill in the rest.

Fisher's Exact Test

- Therefore, to find the probability of observing a table, we only need to find the probability of 1 cell in the table (rather than the probabilities of 4 cells).
- Typically, we use the (1,1) cell, and compute the probabilities that $n_{11}=y. \label{eq:n11}$
- Computing Probabilities of Tables assuming $H_O: \theta = 1$
 - When $\theta = 1$, the probability distribution of n_{11} (and therefore of the set of tables with fixed margins) is

$$P(n_{11}) = \frac{\binom{n_{1+}}{n_{11}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}$$

where

$$\binom{a}{b} = \frac{a!}{b!(a-b)!}$$

"Binomial Coefficient".

• This probability distribution is "hypergeometric".

📕 Example: Fisher's Exact Test

For the Nike example with $n_{11} = 4$,

$$P(4) = \frac{\binom{10}{4}\binom{16}{7}}{\binom{26}{11}} = \frac{(210)(11,440)}{7,726,160} = .311$$

If $H_O: \theta = 1$ is true, then the probability of observing this particular table given the margins equals .311.

I Hypothesis Test that $H_O: \theta = 1$

The *p*-value equals

p-value = \sum (probabilities of tables that favor H_A , including the probability for the observed table).

- To compute the *p*-value, we need the alternative *H_A*.
- $H_A: \theta < 1$ or a "Left tail" test,
 - Find the odds ratio of the observed table,

$$\theta = n_{11}n_{22}/n_{12}n_{21}$$

- Compute the probabilities for the tables where the odds ratios are less than odds ratio from the observed table.
- For our example,

p-value = sum P(y) for tables with $\theta \leq .857$

Left Tail Alternative

Left Tail Test hypothesis

$$H_O: \theta = 1$$
 versus $H_A: \theta < 1$

• (1) Find the odds ratio of the observed table,

$$\theta = n_{11}n_{22}/n_{12}n_{21}$$

• (2) Compute the probabilities for the tables where the odds ratios are less than odds ratio from the observed table.

For our example,

$$p$$
-value = sum $P(y)$ for tables with $\theta \leq .857$

 \blacksquare Tables that favor H_a

$$H_O: \theta = 1$$
 versus $H_A: \theta < 1$

$$\begin{array}{c|c} \underbrace{ \begin{array}{c} \underbrace{ yes & no} \\ 0 & 10 \\ 11 & 5 \\ \hline 11 & 15 \\ P(0) = \begin{pmatrix} 10 \\ 0 \\ \end{pmatrix} \begin{pmatrix} 16 \\ 11 \\ 0 \\ \end{pmatrix} \begin{pmatrix} 16 \\ 11 \\ 16 \\ \end{pmatrix} / \begin{pmatrix} 26 \\ 11 \\ 16 \\ \end{pmatrix} = .00057 \end{array}}_{\begin{tabular}{l} \theta = .000 \\ \hline \end{array}$$

Left tail *p*-value equals

= .31094 + .19989 + .06663 + .01037 + .00057 = .588

\blacksquare "Right tail" test, $H_A: heta > 1$

Compute the probabilities for tables where $\hat{\theta}>$ the odds ratio from the observed table. e.g.,

p-value = sum P(y) for tables with $\theta \ge .857$

θ	y	$P(n_{11} = y)$	Left tail p -value	Right tail <i>p</i> -value
.000	0	.000565	.000565	1.000000
.067	1	.010365	.010930	.999435
.194	2	.066631	.077561	.989070
.429	3	.199892	.277453	.922439
.857	4	.310943	.588396	.722547
1.833	5	.261193	.849589	.411604
3.300	6	.118724	.968313	.150411
7.000	7	.028268	.996581	.031687
17.333	8	.003262	.999843	.003419
63.000	9	.000156	.999999	.000157
∞	10	.000001	1.00000	.000001

I Different Criteria for Two-tail test

For "Two-tail" test, $H_A: \theta \neq 1$, there are 2 main ways to compute *p*-values for two-tailed tests:

- "Probability Criterion"
- "X²" Criterion

Probability Criterion:

p- value = sum of probabilities of tables that are no more likely than the observed table.

that is,

$$p$$
-value $=\sum_{y} P(y)$ where $P(y) \le P(n_{11})$

I Probability Criterion

For our example ...

y	$P(n_{11} = y)$	Left tail	Right tail	Two tail
0	.000565	.000565	1.000000	.000722
1	.010365	.010930	.999435	.014349
2	.066631	.077561	.989070	.109248
3	.199892	.277453	.922439	.427864
4	.310943	.588396	.722547	1.000000
5	.261193	.849589	.411604	.689057
6	.118724	.968313	.150411	.227972
7	.028268	.996581	.031687	.042617
8	.003262	.999843	.003419	.003984
9	.000156	.999999	.000157	.000157
10	.000001	1.00000	.000001	.000001
<u> </u>				

So, for a two-tailed test when $n_{11} = 4$,

$$p$$
-value = $.59 + .41 = 1.00$.

\mathbf{I} X^2 Criterion for $H_A: \theta \neq 1$

p-value equals the sum of probabilities of tables whose Pearson's X^2 is at least as large as the value for the observed table.

y	$P(n_{11} = y)$	Left tail	Right tail	Two tail	Pearson's X^2
0	.000565	.000565	1.000000	.000722	11.917
1	.010365	.010930	.999435	.014349	6.949
2	.066631	.077561	.989070	.109248	3.313
3	.199892	.277453	.922439	.427864	1.008
4	.310943	.588396	.722547	1.000000	.035
5	.261193	.849589	.411604	.689057	.394
6	.118724	.968313	.150411	.227972	2.084
7	.028268	.996581	.031687	.042617	5.105
8	.003262	.999843	.003419	.003984	9.458
9	.000156	.999999	.000157	.000157	15.143
10	.000001	1.00000	.000001	.000001	22.159
F	4	ير المعالية م	· · · · · · · · · · · · · · · · · · ·	- 1 00	

For $n_{11} = 4$, the two-tailed *p*-value equals 1.00.

I Discreteness of Exact Tests

 $p\!\!-\!\!\text{values}$ and Type I Errors

• Yates Continuity Correction.

- This is an approximation of the exact *p*-value.
- It involves adjusting Pearson's X²; however, since computers can compute exact *p*-values, no real need for this anymore.

• Type I Errors.

- The smaller n, the smaller the number of possible p-values.
- Since there are only a fairly small number of possible p-values, setting an α level does not work real well.

I Nike Example

$\begin{array}{l} \underline{\text{If}}\\ \textbf{(1)} \ H_O: \theta = 1 \ \text{is true}\\ \textbf{(2)} \ H_A: \theta > 1 \ \text{(i.e., right tail test)}\\ \textbf{(3)} \ \alpha = .05 \end{array}$

<u>Then</u>

(a) We can never achieve $\alpha = .05$. (b) The only time that we can get p-value < .05 is when $n_{11} \ge 7$ (or $\theta \ge 7.00$), and $P(y \ge 7) = .032$.

y	$P(n_{11} = y)$	Left tail	Right tail	Two tail	Pearson's X^2
0	.000565	.000565	1.000000	.000722	11.917
1	.010365	.010930	.999435	.014349	6.949
2	.066631	.077561	.989070	.109248	3.313
3	.199892	.277453	.922439	.427864	1.008
4	.310943	.588396	.722547	1.000000	.035
5	.261193	.849589	.411604	.689057	.394
6	.118724	.968313	.150411	.227972	2.084
7	.028268	.996581	.031687	.042617	5.105
8	.003262	.999843	.003419	.003984	9.458
9	.000156	.999999	.000157	.000157	15.143
10	.000001	1.00000	.000001	.000001	22.159

📕 Fisher's Test is Conservative

- Consider the expected value of *p*-values.
- Normally, when *H*_O is true, the distribution of *p*-values is uniform on the interval (0,1); that is,

E(p-value) = .5

• For Fisher's test and our the Nike example (and any table with the exact same margins), the expected *p*-values equals

Left tailed test E(p-value) = .612

Right tailed test E(p-value) = .612

Two-tailed test E(p-value) = .612

• What to do?

Reduce the Conservativeness of Exact Tests

• Use a different definition of *p*-value: "mid *p*-value".

- Mid *p*-value equal half the probability of the observed table plus the probability of more extreme tables.
- Nike example with $H_A: \theta > 1$,

half probability of observed = .310943/2 = .1554714probability of more extreme = .411604

 ${\rm mid} \ p{\rm -value} \quad = \quad .155 + .412 = .567$

Which is certainly much smaller than .722 using the other definition of p-value.

- Mid p-value definition doesn't guarantee that the true Type I error rate is less than desired $\alpha.$
- Report p-values and treat them as indices of how much evidence you have against H_O .

I Admission Scandal Results Revisited

	Admission			
	no	yes	Total	
l list	37	123	160	
general	8000	18000	26000	
Total	8037	18123	26160	

Fisher's Test Results:

Fisher's Exact Test				
Cell $(1,1)$ Frequency (F)	37			
Left-sided $\Pr{<=F}$	0.0206			
Right-sided $Pr >= F$	0.9869			
Table Probability (P)	0.0075			
Two-sided $\Pr <= P$	0.0389			

Even the most conservative test comes out significant!

-

I Conditioning on Both Margins

Any other problems with the Nike or Admissions scandal examples and our use of Fisher's test?

Fisher's exact test conditions on both margins, but only 1 margin in the Nike experiment was fixed and nothing was fixed in the Admissions example (maybe total admissions). There are other exact tests that & condition on only 1 margin and on only the total.

There are other exact tests for different situations.


```
data iversusg;
input list $ admit $ count;
datalines;
Ilist yes 123
Ilist no 37
general yes 18000
general no 8000
run:
proc freq;
weight count;
tables list*admit / chisq ;
title 'List x admission';
run;
For 2 \times 2 tables, Fisher's is given with chisq option.
```


📕 Exact Tests for Larger Tables

- SAS/FREQ: By default, Fisher's is computed for 2 × 2 tables whenever the "CHISQ" options is included in the "TABLES" command, *TABLES profs*student / CHISQ*;
- Exact tests conditioning on both margins can be computed on larger tables by adding the "EXACT" option to the "TABLES" command, TABLES row*col / EXACT;
- There is a limit to how large tables can be to use this. The test is not practical (in terms of CPU time) when

$$\frac{n}{(I-1)(J-1)} > 5$$

item An alternative to exact tests...

StatXact & other packages use randomization methods to compute approximations of exact p-values.