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Data

Continuous/Numerical/Quantitative: Measurement on these
Variables are made on an interval or ratio scale. e.g.,

Income of a respondent to a survey
Height
Weight
Age
Reaction time
Blood pressure
Crop yield per acre

Categorical/Discrete/Qualitative: Measures on categorical or
discrete variables consist of assigning observations to one of a number
of categories.

The categories may be either

Unordered.
Ordered.
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Examples of Nominal Variables

There is no natural ordering of the categories; the ordering is arbitrary.

Names of plants native to East Central Illinois
Region of residence of survey respondent
Telephone numbers
Zip-codes
Gender
Occupation
Race/ethincity
Student’s major field of study
Received flu vaccination or not.
Dead/alive
High school program type
Types of behaviors (e.g., aggressive, assertive, passive, etc.)
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Ordinal Variables

There is a natural ordering of the categories; the order is not arbitrary.

Age group

SES (high, middle, low)

Response option selected on an item on an exam question
(correct/incorrect).

Degree of agreement with a statement on a questionaire.
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Examples of Ordinal Variables

Some examples from the General Social Survey (GSS):

“The public has little control over what politicians do in office.”
1 Agree
2 Can’t Choose
3 Disagree
4 (No Answer)

“All employees should be required to retire at an age set by law”
1 Agree strongly
2 Agree
3 Neither agree nor disagree
4 Disagree
5 Disagree strongly
6 (No Answer)
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Nominal or Ordinal?

Geroge Udny Yule:

“. . . all those who have died of small-pox are equally dead: no one

of them is more or less dead than another, and the dead are are

quite distinct from the survivors.”

Methods of Analysis. Methods for nominal variables can be used to
analysis nominal and/or ordinal variables, but methods for ordered
variables are not appropriate for nominal data.

Context is important. The categories of some variables may be
ordered, partially ordered, or ordered with the appropriate ordering of
the categories not known.
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Importance of Context

In one context, a variable may be ordinal but in another it may be nominal.

“Did you get a vaccination for the flu?”

Yes

No

Nominal: you either have or have not received a vaccine.
Ordinal: your perception of your susceptibility or the consequences of
getting sick.

Nominal: different occupations.
Ordinal: consider the relationship between different occupations and SES.
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More Types of Data

Counts: Variables which represent a frequency of occurrence of an event.
Examples:

Number of people who return a completed survey.

Number of times the word “categorical” is used in today’s lecture.

Number of times specific behaviors are observed in a 10 minute taped
session of two children playing together.

Number of bacterial colonies on an agar plate.

Number of accident on the corner of Green & 6th St during the 1st
week of class.

Number of correction answers on an exam.
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More Types of Data

Proportion or a “bounded count”:

The ratio of counts where the numerator equals the number of
“successes” and the denominator equals that number of “trials”.

Includes binary data where the numerator is either 1 or 0 and the
denominator is 1.

Examples:

Number of students taking this class divided by the number of
graduate students studying social sciences at UIUC.
Number of people who respond to a treatment out of those to whom it
was administered.
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Another Classification of Variables

Response or “dependent“ variables. In this class, response variables
are categorical, in particular, counts or proportions.

Explanatory or “independent” variables. These may be continuous
(numerical), ordinal, and/or nominal.

Whether a variable is a response or an explanatory variable depends on the
context.
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Principles of Data Analysis

(from Wickens)

A meaningful statistical analysis cannot be performed without non
statistical information.

The more non statistical information that is available, the stronger
the conclusions that can be drawn.

A confirmatory analysis yields conclusions that are both stronger and
more precise than those of an exploratory analysis.

Confirmatory analysis — question driven.
Exploratory analysis — data driven.

A precisely formulated question gives rise to a specific statistical
analysis; whereas weak ones give little direction.
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Sampling Models for Categorical Data

Random Mechanisms

Two important ones that we’ll start with are

Poisson Sampling

Binomial Sampling
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Poisson Sampling

The Poisson distribution. . .

Is used for counts of events that occur randomly over time (or space).

Is often useful when the probability of event on any particular trial is
very small while the number of trials is very large.

Arises naturally from counting random events during a fixed period of
time.

Requirements:

1 Events must be independent.

2 Time period (or space) must be fixed.
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Examples of Poisson Sampling

The number of suicides in the US in a year.
Number of e-mails received between 8am and 9am Monday.
Number of flaws in 100 feet of wire.
Bortkiewicz (1898) (or Bortkewicz or Bortkewitsch or Bortkewitch ?).
The event: yearly total of men in the Prussian army corps who were
kicked by horses and died as a results of their injuries. 20 year periods
and collected on 14 different corps.

Number Killed Observed Frequency

0 144
1 91
2 32
3 11
4 2

5+ 0

total 280
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1994 World Cup Soccer

(from the internet).
Event = frequency of various number of goals scored by a team during the
1st round of play (out of 35 matches).

Number Observed
of Goals Frequency

0 20
1 29
2 16
3 3
4 1
5 0
6 1

7+ 0

Total 70
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Poisson Process

More formal requirements.. . . 3 rules:

The number of events (or “changes”) in non-overlapping intervals are
independent.

The probability of exactly 1 event is proportional to the length of the
interval. More technically, the probability of exactly 1 event occurring
in a “sufficiently” short interval of length ∆t is approximately ∆tπ.

The probability of 2 or more events in a sufficiently short interval is
essentially zero.
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Example of Poisson

The number of people who arrive at the Illini Union bookstore during a 5
minute period during the 1st week of classes to buy books.

Why might Poisson distribution describe this?

Divide time (the 5 minutes) into tiny-tiny intervals. Then the probability
that a person arrives in any particular time interval is very small, but in 5
minutes the number of people who arrive can be very large.
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Poisson Distribution

The distribution function is

P (y) =
e−µµy

y!
y = 0, 1, 2, . . .

where

y! is “y factorial”

y! = 1× 2× 3× . . .× y.

and
0! = 1

µ is the parameter of the distribution. Once you know µ, you know
everything there is to know about the distribution.
e−µ is the exponential function evaluated at −µ.
Note:

e = 2.718 . . .
If ea = b, then ln(b) = a where “ln” is the natural logarithm.
In this class, whenever your see “log” it refers to the natural log or “ln”.
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World Cup Soccer Revisited

Suppose µ = 1.143, so P (y) = e−1.143(1.143)y

y!

P (0) =
e−1.143(1.143)0

0!
=

(.139)(1.000)

1
= .319

P (1) =
e−1.143(1.143)1

1!
=

(.139)(1.143)

1
= .364

P (2) =
e−1.143(1.143)2

2!
=

(.139)(1.306)

2
= .208

P (3) =
e−1.143(1.143)3

3!
=

(.139)(1.493)

6
= .079

P (4) =
e−1.143(1.143)4

4!
=

(.139)(1.707)

24
= .023

P (5) =
e−1.143(1.143)5

5!
=

(.139)(1.951)

120
= .005

P (6) =
e−1.143(1.143)6

6!
=

(.139)(2.223)

720
= .001

P (7) = a small number
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World Cup Soccer Expected Frequencies

We can compute expected frequencies:

Expected frequency that (Y = y) = 70P (Y = y)

e.g., Expected frequency that (Y = 0) = 70(.319) = 22.32

Number Observed Probability Expected
of Goals Frequency P (y) Frequency

0 20 .319 22.324
1 29 .364 25.513
2 16 .208 14.579
3 3 .079 5.554
4 1 .023 1.587
5 0 .005 0.363
6 1 .001 0.069

7+ 0 .000 0.011
Totals 70 1.00 70.00
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1994 World Cup Soccer Figure

1994 data & fitted Poisson:
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R Figure

1994 data & fitted Poisson:

0 1 2 3 4 5 6, 7+

Goals Scored in 1st Round of 1994 World Cup
0

5
10

15
20

25

mu=1.143

total=70
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1998 World Cup Soccer Figure

1998 data & fitted Poisson:
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Sample Statistics for 94 World Cup Soccer

The mean number of goals (per team) equals

ȳ =
1

70

70∑

i=1

yi

=
1

70
(

20
︷ ︸︸ ︷

0 + 0 + . . .+ 0+

22
︷ ︸︸ ︷

1 + . . .+ 1+ . . .+ 6)

= 1.143

Note: yi is the number of goals that team i scored.

The variance equals

var(y) =
1

70

70∑

i=1

(yi − ȳ)2 = 1.168

The mean and variance of y are about equal.
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Important Property of the Poisson Distribution

The Mean = The Variance

E(Y ) = σ2

µ = σ2

In practice, the variance is usually larger than the mean. This is called
overdispersion

In the soccer example, we (implicitly) assumed

The mean number of goals scored by a team is the same for all
teams; the “Homogeneity” assumption.

The number of goals scored by a team is independent of the number
of goals scored by other teams; the “Independence” assumption.
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The Binomial Distribution

We now assume that the number of trials is fixed and we count the
number of “successes” or events that occur.

Preliminaries: Bernoulli random variables

X is a random variable where X = 1 or 0

The probability that X = 1 is π

The probability that X = 0 is (1− π)

Such variables are called Bernoulli random variables.
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Bernoulli Random Variable

The mean of a Bernoulli random variable is

µx = E(X) = 1π + 0(1− π) = π

The variance of X is

var(X) = σ2
X = E[(X − µX)2]

= (1− π)2π + (0− π)2(1− π)

= π(1− π)
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Example of Bernoulli Random Variable

Suppose that a coin is

“not fair” or is “loaded”

The probability that it lands on heads equals .40 and the probability
that it lands on tails equals .60.

If this coin is flipped many, many, many times, then we would expect
that it would land on heads 40% of the time and tails 60% of the
time.

We define our Bernoulli random variable as

X = 1 if Heads

0 if Tails

where π = P (X = 1) = .40 and (1− π) = P (X = 0) = .60.Note: Once you know π, you know the mean and variance of the
distribution of X.
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Binomial Distribution

A binomial random variable is the sum of N independent Bernoulli random
variables. We will let Y represent a binomial random variable and by
definition

Y =
N∑

i=1

Xi

The mean of a Binomial random variable is

µy = E(Y ) = E(

N∑

i=1

Xi)

= E(X1) + E(X2) + . . .+ E(XN )

=

N
︷ ︸︸ ︷

µx + µx + . . .+ µx

=

N
︷ ︸︸ ︷

π + π + . . .+ π

= Nπ
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Variance of Binomial Random Variable

. . . and the variance of a Binomial random variable is

var(Y ) = σ2
y = var(X1 +X2 + . . .+XN )

=

N
︷ ︸︸ ︷

var(X) + var(X) + . . . + var(X)

=

N
︷ ︸︸ ︷

π(1− π) + π(1− π) + . . .+ π(1− π)

= Nπ(1− π)

Note: Once you know π and N , you know the mean and variance of the
Binomial distribution.
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Binomial Distribution Function

Toss the unfair coin with π = .40 coin N = 3 times.
Y = number of heads.
The tosses are independent of each other.

By multiplication rule & addition rule from probability theory
Possible Outcomes Probability of a Sequence Prob(Y)

X1 +X2 +X3 = Y P (X1, X2, X3) P (Y )
1 + 1 + 1 = 3 (.4)(.4)(.4) = (.4)3(.6)0 = .064 .064
1 + 1 + 0 = 2 (.4)(.4)(.6) = (.4)2(.6)1 = .096
1 + 0 + 1 = 2 (.4)(.6)(.4) = (.4)2(.6)1 = .096 3(.096) = .288
0 + 1 + 1 = 2 (.6)(.4)(.4) = (.4)2(.6)1 = .096
1 + 0 + 0 = 1 (.4)(.6)(.6) = (.4)1(.6)2 = .144
0 + 1 + 0 = 1 (.6)(.4)(.6) = (.4)1(.6)2 = .144 3(.144) = .432
0 + 0 + 1 = 1 (.6)(.6)(.4) = (.4)1(.6)2 = .144
0 + 0 + 0 = 0 (.6)(.6)(.6) = (.4)0(.6)3 = .216 .216

1.000 1.000
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Binomial Distribution Function

The formula for the probability of a Binomial random variable is

P (Y = a) =

(
the number of ways that
Y = a out of N trials

)

P (X = 1)aP (X = 0)(N−a)

=

(
N
a

)

πa(1− π)N−a

where
(

N
a

)

=
N !

a!(N − a)!
=

N(N − 1)(N − 2) . . . 1

a(a− 1) . . . 1((N − a)(N − a− 1) . . . 1)

which is called the “binomial coefficient.”

For example, the number of ways that you can get Y = 2 out of 3 tosses is
(

3
2

)

=
3(2)(1)

2(1)(1)
= 3
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Statistical Inferences Regarding Probability, π

Example: Data from Sommers (2000) Chance.

The data are the number of times that the taller candidate (from two major
parties) of won the US presidential election. We’ll just consider elections
from 1932 to 1992 (Clinton vs Bush).

Winner was Taller Shorter Total
y N − y N
13 2 15

The observed proportion of times that taller candidate won:

p = 13/15 = .8667

Is this significantly different from chance?

Ho : π = .5 versus Ha : π 6= .5

. . . but first. . .
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Maximum Likelihood Estimation

The Likelihood Function for Binomial

P (π|y) = N !

y!(N − y)!
πy(1− π)(N−y)

where y is known and π is unknown.

P (π|y) is now how likely the population proportion equals π given the
data y.

The value of π that is the most likely given the data is the “maximum
likelihood estimate” of π.

Denote MLE’s by “ˆ”, for example π̂.

For binomial: π̂ = y/N (and µ̂ = π̂N).

. . . and for Poisson: µ̂ = σ̂2 = (1/I)
∑I

i=1 yi.
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MLE Function for Presidential Data
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Presidential Election Data

Hypothesis test→ Ho : π = .5 versus Ha : π 6= .5

Using the Binomial distribution,

π̂ = p = y/N = 13/15 = .8667

Need the probability of y = 13 (or p = .8667) or something more extreme
assuming that the null is true — the p–value.

P (15) =
15!

15!0!
(.5)15(1 − .5)0 = .000031

P (14) =
15!

14!1!
(.5)14(1 − .5)1 = .000457

P (13) =
15!

13!2!
(.5)13(1 − .5)2 = .003204

P (2) =
15!

2!13!
(.5)2(1 − .5)13 = .003204

P (1) =
15!

1!14!
(.5)1(1 − .5)14 = .000457

P (0) =
15!

0!15!
(.5)0(1 − .5)15 = .000031

p–value = .0074
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The Sampling Distribution of Proportions

The observed proportion, p, equals π̂:

p = π̂ =
Y

N

Proportions are sample means of the Bernoulli random variables,

p =
Y

N
=

1

N

N∑

i=1

Xi = X̄

The mean of the sampling distribution of p:

µp = E(p) = E(
1

N

N∑

i=1

Xi)

=
1

N
(E(X1) + E(X2) + . . .+ E(XN ))

=
1

N
(

N
︷ ︸︸ ︷

π + π + . . . + π)

=
1

N
(πN) = π = µx −→ unbiased
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The Sampling Distribution of Proportions

The variance of p is

var(p) = σ2
p = var(

Y

N
)

=
1

N2
var(Y )

=
Nπ(1− π)

N2
=

π(1− π)

N
=

var(X)

N
The shape of the sampling distribution?

By the central limit theorem, if N is “large enough”, then p is
approximately distributed as a normal random variable with mean π and
variance π(1− π)/N ;

p ≈ N (π, π(1 − π)/N)

When the “parent” distribution is Binomial, “large enough” usually means
that Nπ ≥ 5 and N(1− π) ≥ 5.
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Large Sample Tests of Hypotheses Regarding π

We can use z and the standard normal distribution:

z =
(p − πo)

√

πo(1− πo)/N

p is the observed proportion of occurrences of the event.
πo is the null hypothesized probability.
√

πo(1− πo)/N is the standard error of the sampling distribution of p
(under Ho).

In our Presidential Election example

z =
(.8667 − .5)

√

.5(1− .5)/15
= 2.84

The p-value for z = 2.84 is .005.
The exact p–value equals .007. If N was larger, then the normal
distribution would be a better approximation of the sampling distribution of
p and the p–values would be closer in value.

15(13/15) = 13 > 5, but 15(2/15) = 2 < 5.
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Method I: Confidence Interval for π

The usual method for (1− α)× 100% CI,

p± zα/2
√

p(1− p)/N

A 95% Presidential Data:

p = .8667 ± 1.96
√

.8667(1 − .8667)/15 −→ (.69, 1.04)

Need a better method for (1− α)× 100% CI
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Method II: Confidence Interval for π

Consider all πo for which you would not reject the null hypothesis,

−zα/2 =
p− πo

√

πo(1− πo)/N
and

p− πo
√

πo(1− πo)/N
= zα/2

The solution for πo:

a = 1 + z2α/2/N

b = −2p− z2α/2/N

c = p2

and

πo =
−b±

√
b2 − 4ac

2a

95% CI for the Presidential Election Data: (.621, .963).
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Another Example: 1994 respondents to the GSS

“Please tell me whether or not you think it should be possible for a
pregnant woman to obtain a legal abortion if the family has a very low
income and cannot afford any more children”.

Response Number

No 954
Yes y = 971

Total N = 1925

Ho : π = .5 versus Ha : π 6= .5

z =
971/1925 − .5

√

.5(1− .5)/1925
= .387

p–value = .698.

A 95% CI for π equals (.482, .527).
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One more example: 2000 Presidential Election

The 2000 US presidential election came down to votes in Florida. The
official results from the Florida Department of State, Division of Elections
for the two top candidates as of Sunday November 28, 2000 are

George W. Bush 2,912,790
Al Gore 2,912,253

Total 5,825,043

This gave George W. Bush a 537 vote lead.

Observed proportion for Bush:

p =
2, 912, 790

5, 825, 043
= .500046094

Ho : π = .5; that is, the election was a tie versus Ho : π 6= .5.

z =
.500046094 − .5

√
.5(.5)

5,825,043

=
.000046094

.00207166
= .0222

p-value = .98.
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99% CI for π

99% CI for the probability that George W. won:

.500046094 ± 2.576(.000207166) =⇒ (.4995, .5006)

Given that the total number of votes equaled 5,825,043, how many votes
would a candidate have needed such that the probability that the
candidate won equaled .99?

i.e., where Power = .99?
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Margin for Victory

Test statistic (note: .995z = 2.576)

2.576 =
p− .50

.00207166

After re-arranging terms,

p = 2.576(.00207166) + .5 = .500533662

So, the number of votes for winner = Np

= 5, 825, 043(.500533662)

= 2, 915, 630.104

number of votes for loser = 5, 825, 043 − 2, 915, 630.104

= 2, 909, 412.896

The margin of victory needed for power = .99 would be

2, 915, 630.104 − 2, 909, 412.896 = 6, 217.208
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SAS & Tests for Proportions

Out of 15 elections, 13 of taller candidates won, which gave us
p = 13/15 = .8667.

To test Ho : π = .5 in SAS:

DATA height;
INPUT height $ count;
DATALINES;
taller 13
shorter 2

RUN;
PROC FREQ DATA=height ORDER=data;

WEIGHT count;
TABLES height / binomial (p=.5);

RUN;
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SAS OUTPUT

Presidential Election data: Test for proportion

The FREQ Procedure

Cumul. Cumul.

height Frequency Percent Freq Percent

taller 13 86.67 13 86.67

shorter 2 13.33 15 100.00

C.J. Anderson (Illinois) Introduction 48.1/ 55



Introduction Data Sampling Models Poisson Sampling The Binomial Distribution Inferences Regarding Probability SAS R Practice

SAS OUTPUT

Binomial Proportion

for height = taller

Proportion 0.8667

ASE 0.0878

95% Lower Conf Limit 0.6946

95% Upper Conf Limit 1.0000

Exact Conf Limits

95% Lower Conf Limit 0.5954

95% Upper Conf Limit 0.9834
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SAS OUTPUT

Test of H0: Proportion = 0.5

ASE under H0 0.1291

Z 2.8402

One-sided Pr > Z 0.0023

Two-sided Pr > |Z| 0.0045

Sample Size = 15
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R: one-sided exact

# US presidents: Taller candidate won (as in the lecture notes)
N← 15
y← 13
# — one sided (binom.test(y,N,alternative=c(“less”),conf.level=.95))

Exact binomial test

data: y and N
number of successes = 13, number of trials = 15, p-value = 0.9995
alternative hypothesis: true probability of success is less than 0.5
95 percent confidence interval:
0.0000000 0.9757743
sample estimates:
probability of success
0.8666667
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R: 2-sided exact

(binom.test(y,N,alternative=c(“two.sided”),conf.level=.95))

Exact binomial test

data: y and N
number of successes = 13, number of trials = 15, p-value = 0.007385
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.5953973 0.9834241
sample estimates:
probability of success

0.8666667
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R (asymptotic)

library(binom) # For asympotic CI and alternative method
# — no correction for continuity
(prop.test(y,N,p=.5, alternative=“two.sided”, conf.level=0.95,
correct=FALSE))

1-sample proportions test without continuity correction
data: y out of N, null probability 0.5
X-squared = 8.0667, df = 1, p-value = 0.004509
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.6211802 0.9626387
sample estimates:

p
0.8666667
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R (lots of CIs)

# 8 different methods:

binom.confint(y,N,conf.level=.95, methods=“all”)
method x n mean lower upper

1 agresti-coull 13 15 0.8666667 0.6086127 0.9752062
2 asymptotic 13 15 0.8666667 0.6946392 1.0386942
3 bayes 13 15 0.8437500 0.6719768 0.9866379
4 cloglog 13 15 0.8666667 0.5639120 0.9648845
5 exact 13 15 0.8666667 0.5953973 0.9834241
6 logit 13 15 0.8666667 0.5946212 0.9664470
7 probit 13 15 0.8666667 0.6223508 0.9719258
8 profile 13 15 0.8666667 0.6423185 0.9760200
9 lrt 13 15 0.8666667 0.6423248 0.9764959
10 prop.test 13 15 0.8666667 0.5838899 0.9765620
11 wilson 13 15 0.8666667 0.6211802 0.9626387
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Practice: 2018 GSS

2018 General Social Survey Data:
“Please tell me whether or not you think it should be possible for a
pregnant woman to obtain a legal abortion if the family has a very low
income and cannot afford any more children”.

Response Number

No 749
Yes y = 769

Total N = 1518

Ho : π = .5 versus Ha : π 6= .5
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